Chapter 4. Integrals
Section 4.53. Liouville’s Theorem and the Fundamental Theorem of Algebra—Proofs of Theorems
Table of contents

1 Theorem 4.53.1. Liouville’s Theorem

2 Corollary 4.53.2. The Fundamental Theorem of Algebra
Theorem 4.53.1. Liouville’s Theorem.
If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By Cauchy’s Inequality (Theorem 4.52.3) with $n = 1$, we have that for any $z_0 \in \mathbb{C}$ and, since f is entire, for all $R > 0$, it must be that $|f'(z_0)| \leq M/R$.
Theorem 4.53.1. Liouville’s Theorem.

If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By Cauchy’s Inequality (Theorem 4.52.3) with $n = 1$, we have that for any $z_0 \in \mathbb{C}$ and, since f is entire, for all $R > 0$, it must be that $|f'(z_0)| \leq M/R$. Since this holds for all $R > 0$, it must be that $f'(z_0) = 0$. Since $z_0 \in \mathbb{C}$ is arbitrary, we can conclude that $f'(z) = 0$ for all $z \in \mathbb{C}$. So by Theorem 2.24.A, f is constant throughout \mathbb{C}. □
Theorem 4.53.1. Liouville’s Theorem.

If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By Cauchy’s Inequality (Theorem 4.52.3) with $n = 1$, we have that for any $z_0 \in \mathbb{C}$ and, since f is entire, for all $R > 0$, it must be that $|f'(z_0)| \leq M/R$. Since this holds for all $R > 0$, it must be that $f'(z_0) = 0$. Since $z_0 \in \mathbb{C}$ is arbitrary, we can conclude that $f'(z) = 0$ for all $z \in \mathbb{C}$. So by Theorem 2.24.A, f is constant throughout \mathbb{C}. □
Theorem 4.53.2. The Fundamental Theorem of Algebra.

Any complex polynomial \(P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n \), where \(a_n \neq 0 \), of degree \(n \geq 1 \) has at least one zero. That is, there exists at least one point \(z_0 \in \mathbb{C} \) such that \(P(z_0) = 0 \).

Proof. ASSUME no such \(z_0 \) exists and that \(P(z) \) is nonzero throughout \(\mathbb{C} \). Then by Lemma 2.24.A, the function \(1/P(z) \) is analytic throughout \(\mathbb{C} \); that is, \(1/P(z) \) is an entire function.
Theorem 4.53.2. The Fundamental Theorem of Algebra.

Any complex polynomial \(P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n \), where \(a_n \neq 0 \), of degree \(n \geq 1 \) has at least one zero. That is, there exists at least one point \(z_0 \in \mathbb{C} \) such that \(P(z_0) = 0 \).

Proof. ASSUME no such \(z_0 \) exists and that \(P(z) \) is nonzero throughout \(\mathbb{C} \). Then by Lemma 2.24.A, the function \(1/P(z) \) is analytic throughout \(\mathbb{C} \); that is, \(1/P(z) \) is an entire function.

We claim that \(1/P(z) \) is bounded. Notice that

\[
P(z) = \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} + a_n \right) z^n.
\]

Since

\[
\lim_{z \to 0} \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) = 0,
\]

then for \(\varepsilon = |a_n|/2 \) there is \(R > 0 \) such that for all \(|z| > R \) we have...
Theorem 4.53.2. The Fundamental Theorem of Algebra.
Any complex polynomial \(P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n \), where \(a_n \neq 0 \), of degree \(n \geq 1 \) has at least one zero. That is, there exists at least one point \(z_0 \in \mathbb{C} \) such that \(P(z_0) = 0 \).

Proof. ASSUME no such \(z_0 \) exists and that \(P(z) \) is nonzero throughout \(\mathbb{C} \). Then by Lemma 2.24.A, the function \(1/P(z) \) is analytic throughout \(\mathbb{C} \); that is, \(1/P(z) \) is an entire function.

We claim that \(1/P(z) \) is bounded. Notice that

\[
P(z) = \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} + a_n \right) z^n.
\]

Since

\[
\lim_{z \to 0} \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) = 0,
\]
then for \(\varepsilon = |a_n|/2 \) there is \(R > 0 \) such that for all \(|z| > R \) we have...
Theorem 4.53.2 (continued 1)

Proof (continued)...

\[\left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right| < \frac{|a_n|}{2} = \varepsilon. \]

So for \(|z| > R|,

\[\left| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) + a_n \right| \]

\[\geq \left| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) - |a_n| \right| \quad \text{by Corollary 1.4.1} \]

\[> |a_n|/2. \]

So

\[|P(z)| = \left| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) + a_n \right| |z^n| \]

\[= \left| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) + a_n \right| |z|^n \]

\[> |a_n||z|^n/2 > |a_n|R^n/2 \quad \text{for} \quad |z| > R. \]
Theorem 4.53.2 (continued 1)

Proof (continued). ...

\[\left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right| < \frac{|a_n|}{2} = \varepsilon. \]

So for \(|z| > R|\),

\[\left\| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) + a_n \right\| \]

\[\geq \left\| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right\| - |a_n| \text{ by Corollary 1.4.1} \]

\[> |a_n|/2. \]

So

\[|P(z)| = \left\| \left\{ \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) + a_n \right\} z^n \right\| \]

\[= \left\| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \cdots + \frac{a_{n-1}}{z} \right) + a_n \right\| |z|^n \]

\[> |a_n| |z|^n/2 > |a_n| R^n/2 \text{ for } |z| > R. \]
Theorem 4.53.2. The Fundamental Theorem of Algebra.
Any complex polynomial \(P(z) = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n \), where \(a_n \neq 0 \), of degree \(n \geq 1 \) has at least one zero. That is, there exists at least one point \(z_0 \in \mathbb{C} \) such that \(P(z_0) = 0 \).

Proof (continued). So \(|1/P(z)| < 2/(|a_n|R^n) \) for \(|z| > R \). Now \(1/P(z) \) is continuous by assumption and so by Theorem 2.18.3, \(|1/P(z)| \) is bounded, by say \(M \), on the closed and bounded set \(|z| \leq R \). Therefore

\[
\left| \frac{1}{P(z)} \right| \leq \begin{cases}
|a_n|R^n/2 & \text{for } |z| > R \\
M & \text{for } |z| \leq R
\end{cases}
\]

and \(1/P(z) \) is a bounded entire function.
Theorem 4.53.2. The Fundamental Theorem of Algebra.
Any complex polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$, where $a_n \neq 0$, of degree $n \geq 1$ has at least one zero. That is, there exists at least one point $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof (continued). So $|1/P(z)| < 2/(|a_n|R^n)$ for $|z| > R$. Now $1/P(z)$ is continuous by assumption and so by Theorem 2.18.3, $|1/P(z)|$ is bounded, by say M, on the closed and bounded set $|z| \leq R$. Therefore

$$\left|\frac{1}{P(z)}\right| \leq \begin{cases} |a_n|R^n/2 & \text{for } |z| > R \\ M & \text{for } |z| \leq R \end{cases}$$

and $1/P(z)$ is a bounded entire function.

But Liouville’s Theorem then implies that $1/P(z)$ is constant, a CONTRADICTION. So the assumption that $P(z)$ is nonzero throughout \mathbb{C} is false and there must be some $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$. \qed
Theorem 4.53.2 (continued 2)

Theorem 4.53.2. The Fundamental Theorem of Algebra.
Any complex polynomial \(P(z) = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n \), where \(a_n \neq 0 \), of degree \(n \geq 1 \) has at least one zero. That is, there exists at least one point \(z_0 \in \mathbb{C} \) such that \(P(z_0) = 0 \).

Proof (continued). So \(|1/P(z)| < 2/(|a_n|R^n) \) for \(|z| > R \). Now \(1/P(z) \) is continuous by assumption and so by Theorem 2.18.3, \(|1/P(z)| \) is bounded, by say \(M \), on the closed and bounded set \(|z| \leq R \). Therefore

\[
\left| \frac{1}{P(z)} \right| \leq \begin{cases}
|a_n|R^n/2 & \text{for } |z| > R \\
M & \text{for } |z| \leq R
\end{cases}
\]

and \(1/P(z) \) is a bounded entire function.

But Liouville’s Theorem then implies that \(1/P(z) \) is constant, a CONTRADICTION. So the assumption that \(P(z) \) is nonzero throughout \(\mathbb{C} \) is false and there must be some \(z_0 \in \mathbb{C} \) such that \(P(z_0) = 0 \). \(\square \)