Theorem 6.71.1 (continued 1)

\[\int_C f(z) \, dz = \int_{-C_0} f(z) \, dz = - \int_{C_0} f(z) \, dz. \]
Then, by the definition of residue at infinity, \(\int_C f(z) \, dz = \text{Res}_{z=\infty} f(z) \). Now we take the Laurent series of \(f \) about \(z_0 = 0 \) (\(f \) may or may not be analytic at \(z_0 \)) to get by Theorem 60.1, “Laurent’s Theorem,”
\[f(z) = \sum_{n=-\infty}^{\infty} c_n z^n \]
for \(R_1 < |z| < \infty \) where \(R_1 < R_0 \) is such that \(C \subset \{ z \mid |z| < R_1 \} \) and
\[c_n = \frac{1}{2\pi i} \int_{C_0} \frac{f(z) \, dz}{z^{n+1}} \]
for \(n \in \mathbb{Z} \) (see the note after Theorem 60.1 for the concise expression of \(c_n \)). Replacing \(z \) with \(1/z \) in the Laurent series for \(f(z) \) and then multiplying by \(1/z^2 \) gives
\[\frac{1}{z^2} f \left(\frac{1}{z} \right) = \frac{1}{z^2} \sum_{n=-\infty}^{\infty} c_n z^n = \sum_{n=-\infty}^{\infty} c_n z^{n+2} \]
for \(0 < |z| < \frac{1}{R_1} \).

Theorem 6.71.1 (continued 2)

Proof (continued). With \(n = 1 \) we get
\[\text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right) = c_{-1} = \frac{1}{2\pi i} \int_{C_0} f(z) \, dz. \]
Now by the definition of \(\text{Res}_{z=\infty} f(z) \),
\[\text{Res}_{z=\infty} f(z) = \frac{1}{2\pi i} \int_C f(z) \, dz = \frac{1}{2\pi i} \int_{C_0} f(z) \, dz = \text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right) \]
and
\[\int_C f(z) \, dz = 2\pi i \text{Res} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right), \]
as claimed.