Complex Variables

Chapter 6. Residues and Poles
Section 6.7.1. Residues at Infinity—Proofs of Theorems
Table of contents

1. Theorem 6.71.1
Theorem 6.71.1

Theorem 6.71.1. If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$\int_C f(z) \, dz = 2\pi i \text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right).$$

Proof. Choose $R_0 > 0$ sufficiently large so that $C \subset \{ z \mid |z| < R_0 \}$ and define C_0 as the circle $|z| = R_0$ oriented in the negative direction. See Figure 89.
Theorem 6.71.1

Theorem 6.71.1. If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$\int_C f(z) \, dz = 2\pi i \text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right).$$

Proof. Choose $R_0 > 0$ sufficiently large so that $C \subset \{ z \mid |z| < R_0 \}$ and define C_0 as the circle $|z| = R_0$ oriented in the negative direction. See Figure 89.
Theorem 6.71.1

Theorem 6.71.1. If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$\int_C f(z) \, dz = 2\pi i \text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right).$$

Proof. Choose $R_0 > 0$ sufficiently large so that $C \subset \{ z \mid |z| < R_0 \}$ and define C_0 as the circle $|z| = R_0$ oriented in the negative direction. See Figure 89.
\[\int_C f(z) \, dz = \int_{-C_0} f(z) \, dz = -\int_{C_0} f(z) \, dz. \]
Then, by the definition of residue at infinity, \(\int_C f(z) \, dz = \text{Res}_{z=\infty} f(z). \)
Now we take the Laurent series of \(f \) about \(z_0 = 0 \) (\(f \) may or may not be analytic at \(z_0 \)) to get by Theorem 60.1, “Laurent’s Theorem,”
\[f(z) = \sum_{n=-\infty}^{\infty} c_n z^n \]
for \(R_1 < |z| < \infty \) where \(R_1 < R_0 \) is such that \(C \subset \{ z \mid |z| < R_1 \} \) and
\[c_n = \frac{1}{2\pi i} \int_{-C_0} \frac{f(z) \, dz}{z^{n+1}} \]
for \(n \in \mathbb{Z} \) (see the note after Theorem 60.1 for the concise expression of \(c_n \)).
Theorem 6.71.1 (continued 1)

Proof (continued). By Theorem 4.49.B, “Principle of Deformation,”
\[\int_C f(z) \, dz = \int_{-C_0} f(z) \, dz = -\int_{C_0} f(z) \, dz. \]
Then, by the definition of residue at infinity,
\[\int_C f(z) \, dz = \text{Res}_{z=\infty} f(z). \]
Now we take the Laurent series of \(f \) about \(z_0 = 0 \) (\(f \) may or may not be analytic at \(z_0 \)) to get by
Theorem 60.1, “Laurent’s Theorem,”
\[f(z) = \sum_{n=-\infty}^{\infty} c_n z^n \]
for \(R_1 < |z| < \infty \) where \(R_1 < R_0 \) is such that \(C \subset \{ z \mid |z| < R_1 \} \) and
\[c_n = \frac{1}{2\pi i} \int_{-C_0} f(z) \, \frac{dz}{z^{n+1}} \]
for \(n \in \mathbb{Z} \) (see the note after Theorem 60.1 for the concise expression of \(c_n \)).
Replacing \(z \) with \(1/z \) in the Laurent series for \(f(z) \) and then multiplying by \(1/z^2 \) gives
\[
\frac{1}{z^2} f \left(\frac{1}{z} \right) = \frac{1}{z^2} \sum_{n=-\infty}^{\infty} \frac{c_n}{z^n} = \sum_{n=-\infty}^{\infty} \frac{c_n}{z^{n+2}} \quad \text{for} \quad 0 < |z| < \frac{1}{R_1}.
\]
\[\int_{C} f(z) \, dz = \int_{-C_0} f(z) \, dz = -\int_{C_0} f(z) \, dz. \]
Then, by the definition of residue at infinity, \(\int_{C} f(z) \, dz = \text{Res}_{z=\infty} f(z). \) Now we take the Laurent series of \(f \) about \(z_0 = 0 \) (\(f \) may or may not be analytic at \(z_0 \)) to get by Theorem 60.1, “Laurent’s Theorem,” \(f(z) = \sum_{n=-\infty}^{\infty} c_n z^n \) for \(R_1 < |z| < \infty \) where \(R_1 < R_0 \) is such that \(C \subset \{ z \mid |z| < R_1 \} \) and
\[
c_n = \frac{1}{2\pi i} \int_{-C_0} \frac{f(z) \, dz}{z^{n+1}} \quad \text{for } n \in \mathbb{Z} \] (see the note after Theorem 60.1 for the concise expression of \(c_n \)). Replacing \(z \) with \(1/z \) in the Laurent series for \(f(z) \) and then multiplying by \(1/z^2 \) gives
\[
\frac{1}{z^2} f \left(\frac{1}{z} \right) = \frac{1}{z^2} \sum_{n=-\infty}^{\infty} \frac{c_n}{z^n} = \sum_{n=-\infty}^{\infty} \frac{c_n}{z^{n+2}} \quad \text{for } 0 < |z| < \frac{1}{R_1}.
\]
Theorem 6.71.1 (continued 2)

Proof (continued). With $n = 1$ we get

$$\text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right) = c_{-1} = \frac{1}{2\pi i} \int_{-C_0} f(z) \, dz.$$

Now by the definition of $\text{Res}_{z=\infty} f(z)$,

$$\text{Res}_{z=\infty} f(z) = \frac{1}{2\pi i} \int_{C} f(z) \, dz = \frac{1}{2\pi i} \int_{-C_0} f(z) \, dz = \text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right)$$

and

$$\int_{C} f(z) \, dz = 2\pi i \text{Res} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right),$$

as claimed.
Theorem 6.71.1 (continued 2)

Proof (continued). With $n = 1$ we get

$$\text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right) = c_{-1} = \frac{1}{2\pi i} \int_{-C_0} f(z) \, dz.$$

Now by the definition of $\text{Res}_{z=\infty} f(z)$,

$$\text{Res}_{z=\infty} f(z) = \frac{1}{2\pi i} \int_{C} f(z) \, dz = \frac{1}{2\pi i} \int_{-C_0} f(z) \, dz = \text{Res}_{z=0} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right)$$

and

$$\int_{C} f(z) \, dz = 2\pi i \text{Res} \left(\frac{1}{z^2} f \left(\frac{1}{z} \right) \right),$$

as claimed.