Theorem 6.77.1

Theorem 6.77.1. If \(z_0 \) is a pole of a function \(f \) then \(\lim_{z \to z_0} f(z) = \infty \).

Proof. Suppose \(f \) has a pole of order \(m \) at \(z = z_0 \). Then by Theorem 6.73.1, \(f(z) = \frac{\varphi(z)}{(z-z_0)^m} \) where \(\varphi \) is analytic for \(|z-z_0| < R_2 \) for some \(R_2 > 0 \) and \(\varphi(z_0) \neq 0 \). Then

\[
\lim_{z \to z_0} \frac{1}{f(z)} = \lim_{z \to z_0} \frac{(z-z_0)^m}{\varphi(z)} = \lim_{z \to z_0} \frac{z-z_0}{\varphi(z)} = 0, \quad \varphi(z_0) \neq 0.
\]

So \(\lim_{z \to z_0} f(z) = \infty \) by Theorem 2.17.1. \(\square \)

Theorem 6.77.2

Theorem 6.77.2. If \(z_0 \) is a removable singular point of a function \(f \), then \(f \) is analytic and bounded in some deleted neighborhood \(0 < |z-z_0| < \varepsilon \) of \(z_0 \).

Proof. Since a removable singular point is isolated (by definition) then \(f \) is analytic for \(0 < |z-z_0| < R_2 \) for some \(R_2 > 0 \). By Note 6.72.A, there is analytic \(g \) defined for \(|z-z_0| < R_2 \) such that \(g(z) = f(z) \) for \(0 < |z-z_0| < R_2 \). Let \(\varepsilon > 0 \) satisfy \(\varepsilon < R_2 \). Then \(g \) is continuous on \(|z-z_0| \leq \varepsilon \) and so by Theorem 2.18.3 there is \(M \) such that \(|g(z)| \leq M \) for all \(|z-z_0| \leq \varepsilon \). Therefore \(|f(z)| \leq M \) for all \(0 < |z-z_0| \leq \varepsilon \) and the claim holds. \(\square \)

Lemma 6.77.1. Riemann’s Theorem

Lemma 7.77.1. Riemann’s Theorem.

Suppose that a function \(f \) is analytic and bounded in some deleted neighborhood \(0 < |z-z_0| < \varepsilon \) of \(z_0 \). If \(f \) is not analytic at \(z_0 \), then \(f \) has a removable singularity at \(z_0 \).

Proof. Since \(f \) is analytic in \(0 < |z-z_0| < \varepsilon \) then by Theorem 60.1, “Laurent’s Theorem,” there is a Laurent series for \(f \) centered at \(z_0 \):

\[
f(z) = \sum_{n=-\infty}^{\infty} c_n(z-z_0)^n = \sum_{n=0}^{\infty} a_n(z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} \quad \text{for} \quad 0 < |z-z_0| < \varepsilon.
\]

Let \(C \) denote the positively oriented circle \(|z-z_0| = \rho \) where \(0 < \rho < \varepsilon \) (so that \(f \) is analytic on \(C \)). By Laurent’s Theorem, \(b_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}} \) for \(n = 1, 2, \ldots \).
Lemma 6.77.1. Riemann’s Theorem (continued)

Lemma 7.77.1. Riemann’s Theorem.
Suppose that a function \(f \) is analytic and bounded in some deleted neighborhood \(0 < |z - z_0| < \varepsilon \) of \(z_0 \). If \(f \) is not analytic at \(z_0 \), then \(f \) has a removable singularity at \(z_0 \).

Proof (continued). Since \(f \) is hypothesized to be bounded on \(0 < |z - z_0| < \varepsilon \), let \(M \) be the bound and then

\[
|b_n| = \left| \frac{1}{2\pi i} \int \frac{f(z) \, dz}{(z - z_0)^{n+1}} \right| \\
\leq \frac{1}{2\pi} M 2\pi \varepsilon^{n+1} = M \varepsilon^n
\]

by Theorem 4.43.1.

Since \(0 < \rho < \varepsilon \) is arbitrary, this inequality holds for all such \(\rho \) and hence

\[
|b_n| = \lim_{\rho \to 0} |b_n| \leq \lim_{\rho \to 0} M \rho^n = 0.
\]

That is, \(b_n = c_n = 0 \) for all \(n = 1, 2, \ldots \) and the Laurent series for \(f \) is \(f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \). So, by definition, the singular point \(z_0 \) of \(f \) is a removable singular point.

Theorem 6.73.1. Cauchy-Weierstrass Theorem

Suppose that \(z_0 \) is an essential singularity of function \(f \) and let \(w_0 \) be any complex number. Then for all \(\varepsilon > 0 \), the inequality \(|f(z) - w_0| < \varepsilon \) is satisfied at some point \(z \) in every deleted neighborhood \(0 < |z - z_0| < \delta \) of \(z_0 \) for \(\delta > 0 \).

Proof. Let \(w_0 \in \mathbb{C}, \varepsilon > 0, \) and \(\delta > 0 \) be given where \(\delta \) is sufficiently small so that \(f \) is analytic on \(0 < |z - z_0| < \delta \). Assume \(|f(z) - w_0| \geq \varepsilon \) for all \(z \) in \(0 < |z - z_0| < \delta \). Then the function \(g(z) = 1/(f(z) - w_0) \) is analytic and bounded (by \(M = 1/\varepsilon \)) on \(0 < |z - z_0| < \delta \) (notice that \(g \) is non-zero by the definition for these \(z \) values). So by Lemma 6.77.1, \(z_0 \) is a removable singularity of \(g \). We extend \(g \) to be defined at \(z_0 \) by setting \(g(z_0) = \lim_{z \to z_0} g(z) \). Then \(g \) is analytic on \(|z - z_0| < \delta \) (see Note 6.72.A).

Theorem 6.73.1 (continued)

Proof (continued). If \(g(z_0) \neq 0 \) then \(f(z) = \frac{1}{g(z)} + w_0 \) and \(f \) is analytic where \(g \) is non-zero. Since \(g(z_0) \neq 0 \) then \(g(z) \neq 0 \) for \(|z - z_0| < \delta \). But then \(f \) is analytic on \(0 < |z - z_0| < \delta \) and \(\lim_{z \to z_0} f(z) = \frac{1}{g(z_0)} + w_0 \). So from the definition of limit, there is \(\delta_1 \) such that \(0 < \delta_1 < \delta \) and \(f \) is bounded on \(0 < |z - z_0| < \delta_1 \). But then, by Lemma 6.73.1, \(f \) has a removable singular point at \(z = z_0 \), not an essential singularity, a CONTRADICTION.

If \(g(z_0) = 0 \) then, since \(g \) is not identically the zero function (since \(g \) is nonzero for \(0 < |z - z_0| < \delta \)) then \(z_0 \) is a zero of \(g \) of some order \(m \) (see Section 75) and so by Theorem 6.76.1 (with \(p(z) = 1 + g(z)w_0 \) and \(q(z) = g(z) \)), \(f(z) = \frac{1}{g(z)} + w_0 = \frac{1 + g(z)w_0}{g(z)} \) has a pole of order \(m \) at \(z_0 \). CONTRADICTING the fact that \(f \) has an essential singularity, no a pole at \(z_0 \). So the assumption that \(|f(z) - w_0| \geq \varepsilon \) for all \(0 < |z - z_0| < \delta \) is false and so there must be some point \(z \) in \(0 < |z - z_0| < \delta \) such that all \(0 < |z - z_0| < \delta \) is false and so there must be some point \(z \) in \(0 < |z - z_0| < \delta \) such that \(|f(z) - w_0| < \varepsilon \), as claimed.