Section 1.11. Regions in the Complex Plane

Note. In order to deal with the calculus of functions of a complex variable, we need to take the ε/δ ideas from Calculus 1 and 2 and apply them to the complex setting. This is largely accomplished by replacing the distance measure on \mathbb{R} to the distance measure on \mathbb{C}. Recall that the distance between $x_1, x_2 \in \mathbb{R}$ is $|x_1 - x_2|$ (the absolute value of the difference). We have seen that the distance between $z_1, z_2 \in \mathbb{C}$ is $|z_1 - z_2|$ (the modulus of the difference).

Note. To inspire the things we define in this section, let’s recall the definition of “limit” from Calculus 1: “Let $f(x)$ be defined on an open interval about x_0, except possibly at x_0 itself. We say that $f(x)$ approaches the limit L as x approaches x_0 and write

$$\lim_{x \to x_0} f(x) = L,$$

if, for every number $\varepsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all x,

$$0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$"

Definition. For a given $z_0 \in \mathbb{C}$ and $\varepsilon > 0$, the set $\{z \in \mathbb{C} \mid |z - z_0| < \varepsilon\}$ is called an ε neighborhood of z_0, which we denote simply as “$|z - z_0| < \varepsilon$.” The deleted ε neighborhood of z_0 is the set $\{z \in \mathbb{C} \mid 0 < |z - z_0| < \varepsilon\}$, abbreviated “$0 < |z - z_0| < \varepsilon$.”
Definition. A point z_0 is an interior point of set $S \subset \mathbb{C}$ if there is some ε neighborhood of z_0 which is a subset of S. A point z_0 is an exterior point of a set $S \subset \mathbb{C}$ if there is some ε neighborhood of z_0 containing no points of S (i.e., disjoint from S). A point z_0 is a boundary point of set $S \subset \mathbb{C}$ if it is neither an interior point nor an exterior point of S. The set of all boundary points of set S is called the boundary of S, sometimes denoted $\partial(S)$.

Lemma 1.11.A. A point z_0 is a boundary point of set S if and only if every ε neighborhood of z_0 contains at least one point in set S and at least one point not in S.

Definition. A set of complex numbers is open if it contains none of its boundary points. A set of complex numbers is closed if it contains all of its boundary points. The closure of set $S \subset \mathbb{C}$ is the set consisting of all points of S and all boundary points of S.

Definition. An open set $S \subset \mathbb{C}$ is connected if each pair of points $z_1, z_2 \in S$ can be joined by a polygonal line consisting of a finite number of line segments joined end to end, that lies entirely in S. A nonempty open connected set is a domain. A domain together with some, none, or all of its boundary points is a region.
Note. The annulus $1 < |z| < 2$ is an open connected set, as suggested in Figure 16.

Definition. A set $S \subset \mathbb{C}$ is \textit{bounded} if S lies in some circle $|z| = R$. A set of complex numbers that is not bounded is \textit{unbounded}.

Definition. A point z_0 is an \textit{accumulation point} of set $S \subset \mathbb{C}$ if each deleted neighborhood of z_0 contains at least one point of S.

Lemma 1.11.B. If a set $S \subset \mathbb{C}$ is closed, then S contains all of its accumulation points.

Definition. A point $z_0 \in S$ is an \textit{isolated point} of set S if there is a deleted neighborhood of z_0 containing no points in set S (i.e., disjoint from S).
Example 1.11.A. Find the set of interior points, boundary points, accumulation points, and isolated points for:

The interior points are all points in the set \(\{ z \in \mathbb{C} \mid |z| < 1 \} \). The boundary points are all points in the set \(\{ z \in \mathbb{C} \mid |z| = 1 \} \cup \{2\} \). The accumulation points are all points in the set \(\{ z \in \mathbb{C} \mid |z| \leq 1 \} \). The only isolated point is \(z = 2 \).

Revised: 2/29/2020