Section 2.17. Limits Involving the Point at Infinity

Note. In this section, we introduce the symbol ∞ and rigorously define limits of $f(z)$ as z approaches ∞ and limits of $f(z)$ which are ∞.

Note. Brown and Churchill introduce a sphere of radius 1 centered at the origin of the complex plane. They define the point N as the point on the sphere farthest from the plane and “above” the plane (corresponding, in a sense, to the “north pole” of the sphere). They then map each point P on the sphere (other than N) onto the plane by projecting the point P onto the plane with a straight line through P and N. This is called the stereographic projection and the sphere is called the Riemann sphere. The point N itself is then associated with the symbol ∞. In this way, we have a one to one and onto mapping (i.e., a bijection) from the Riemann sphere to $\mathbb{C} \cup \{\infty\}$ (which is called the extended complex plane).
Note. In Introduction to Topology (MATH 4357/5357), you will encounter the extended complex plane as a “one-point compactification” of the complex plane; see my online notes for Introduction to Topology at 29. Local Compactness (see Example 4). We also address the extended complex plane as a metric space in our graduate-level Complex Analysis 1 class (MATH 5510); see my notes for this class at I.6. The Extended Plane and its Spherical Representation.

Definition. In the extended complex plane, an \(\varepsilon \)-neighborhood of \(\infty \) is the set \(\{ z \in \mathbb{C} | \frac{1}{|z|} < \varepsilon \} \). An open set containing an \(\varepsilon \)-neighborhood of \(\infty \) for some \(\varepsilon > 0 \) is a neighborhood of \(\infty \).

Definition. Let \(f \) be a function defined and nonzero at all points \(z \) of some neighborhood of \(\infty \). If there is \(w_0 \in \mathbb{C} \) such that for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[
1/|z| < \delta \quad \text{implies} \quad |f(z) - w_0| < \varepsilon,
\]

then the limit as \(z \) approaches \(\infty \) of \(f \) is \(w_0 \), denoted \(\lim_{z \to \infty} f(z) = w_0 \).

Definition. Let \(f \) by a function defined and nonzero at all points \(z \) in some deleted neighborhood of \(z_0 \). If for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[
0 < |z - z_0| < \delta \quad \text{implies} \quad 1/|f(z)| < \varepsilon,
\]

then the limit of \(f \) as \(z \) approaches \(z_0 \) is \(\infty \), denoted \(\lim_{z \to z_0} f(z) = \infty \).
Definition. Let f be a function defined and nonzero at all points z of some neighborhood of ∞. If for all $\varepsilon > 0$ there exists $\delta > 0$ such that

$$1/|z| < \delta \text{ implies } 1/|f(z)| < \varepsilon$$

then the *limit as z approaches ∞* of f is ∞, denoted $\lim_{z \to \infty} f(z) = \infty$.

Theorem 2.17.1. If $z_0, w_0 \in \mathbb{C}$ then

\[
\begin{align*}
\lim_{z \to z_0} f(z) &= \infty \text{ if and only if } \lim_{z \to z_0} 1/f(z) = 0 \\
\lim_{z \to \infty} f(z) &= w_0 \text{ if and only if } \lim_{z \to 0} f(1/z) = w_0, \text{ and} \\
\lim_{z \to \infty} f(z) &= \infty \text{ if and only if } \lim_{z \to 0} 1/f(1/z) = 0.
\end{align*}
\]

Example 2.17.A. We now establish the following limits.

(a) $\lim_{z \to -1} \frac{iz + 3}{z + 1} = \infty$.

Solution. We let $f(z) = \frac{iz + 3}{z + 1}$ and consider

\[
\lim_{z \to -1} \frac{1}{f(z)} = \lim_{z \to -1} \frac{z + 1}{iz + 3} = \frac{(-1) + 1}{i(-1) + 3} = \frac{0}{3 - i} = 0
\]

where we have evaluated the limit using Corollary 2.16.B. So by Theorem 2.17.1 (1st claim), $\lim_{z \to -1} f(z) = \lim_{z \to -1} \frac{iz + 3}{z + 1} = \infty$. □

(b) $\lim_{z \to \infty} \frac{2z + i}{z + 1} = 2$.

Solution. We let $f(z) = \frac{2z + i}{z + 1}$ and consider

\[
\lim_{z \to \infty} f(1/z) = \lim_{z \to 0} \frac{2(1/z) + 1}{(1/z) + 1} = \lim_{z \to 0} \frac{2(1/z) + 1}{1 + z} = \lim_{z \to 0} \frac{2 + iz}{1 + z} = \frac{2 + i(0)}{1 + (0)} = \frac{2}{1} = 2
\]
where we have evaluated the limit using Corollary 2.16.B. So by Theorem 2.17.1 (2nd claim), \(\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \frac{2z + i}{z + 1} = 2. \square \)

(c) \(\lim_{z \to \infty} \frac{2z^3 - 1}{z^2 + 1} = \infty. \)

Solution. We let \(f(z) = \frac{2z^3 - 1}{z^2 + 1} \) and consider

\[
\lim_{z \to 0} \frac{1}{f(1/z)} = \lim_{z \to 0} \frac{(1/z)^2 + 1}{2(1/z)^3 - 1} = \lim_{z \to 0} \frac{(1/z)^2 + 1}{2(1/z)^3 - 1} \cdot \frac{z^3}{z^3} = \lim_{z \to 0} \frac{z + z^3}{2 - z^3}
\]

\[
= \lim_{z \to 0} \frac{(0) + (0)^3}{2 - (0)^3} = 0
\]

where we have evaluated the limit using Corollary 2.16.B. So by Theorem 2.17.1 (3rd claim), \(\lim_{z \to \infty} f(z) = \infty. \square \)