Section 2.23. Polar Coordinates

Note. In this section, we restate the results of the previous two sections on the Cauchy-Riemann equations, but this time in polar coordinates \((r, \theta)\) instead of rectangular coordinates \((x, y)\).

Lemma 2.23.A. Let the function \(f(z) = u(x, y) + iv(x, y)\) be defined throughout some \(\epsilon\) neighborhood of a point \(z_0 = x_0 + iy_0\), and suppose that

(a) the first-order partial derivatives of the functions \(u\) and \(v\) with respect to \(x\) and \(y\) exist everywhere in the neighborhood, and

(b) those partial derivatives are continuous at \((x_0, y_0)\) and satisfy the Cauchy-Riemann equations \(u_x(x_0, y_0) = v_y(x_0, y_0)\) and \(u_y(x_0, y_0) = -v_x(x_0, y_0)\).

Then with \(z_0 = r_0 \exp(i\theta_0) \neq 0\) we have

\[
 r_0 u_r(r_0, \theta_0) = v_{\theta}(r_0, \theta_0) \text{ and } u_{\theta}(r_0, \theta_0) = -r_0 v_r(r_0, \theta_0).
\]

These are the polar coordinate forms of the Cauchy-Riemann equations.

Lemma 2.23.B. Let \(f(z) = f(r \exp(i\theta)) = u(r, \theta) + iv(r, \theta)\) be defined throughout some \(\epsilon\) neighborhood of a nonzero point \(z_0 = r_0 \exp(i\theta_0)\) and suppose that

(a) the first-order partial derivatives of the functions \(u\) and \(v\) with respect to \(r\) and \(\theta\) exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at \((r_0, \theta_0)\) and satisfy the polar form \(ru_r = v_\theta\) and \(u_\theta = -rv_r\) of the Cauchy Riemann equations at \((r_0, \theta_0)\).
Then the Cauchy-Riemann equations in rectangular form are satisfied at $z_0 = x_0 + iy_0$:

$$u_x(x_0, y_0) = v_y(x_0, y_0) \text{ and } u_y(x_0, y_0) = -v_x(x_0, y_0).$$

Note. The proof of Lemma 2.23.B is to be given in Exercise 2.23.7 (Exercise 2.24.5 in the 9th edition of the book).

Lemma 2.23.C. Let $f(z) = f(r \exp(i\theta)) = u(r, \theta) + iv(r, \theta)$ satisfy the hypotheses of Lemma 2.23.B. Then f is differentiable at $z_0 = r_0 \exp(i\theta_0)$ and

$$f'(z_0) = e^{-i\theta_0}(u_r(r_0, \theta_0) + iv_r(r_0, \theta_0)).$$

Note. The proof of Lemma 2.23.C is to be given in Exercise 2.23.8 (Exercise 2.24.6 in the 9th edition of the book). An alternative formula for $f'(z_0)$ is to be given in Exercise 2.23.9 (Exercise 2.24.7(a) in the 9th edition of the book):

$$f'(z_0) = \frac{-i}{z_0}(u_\theta(r_0, \theta_0) + iv_\theta(r_0, \theta_0)).$$

Note. Lemmas 2.23.A, 2.23.B, and 2.23.C combine to give the following.
Theorem 2.23.A. Let the function \(f(z) = f(r \exp(i\theta)) = u(r, \theta) + iv(r, \theta) \) be defined throughout some \(\varepsilon \) neighborhood of a point \(z_0 = r_0 \exp(i\theta_0) \), and suppose that

(a) the first-order partial derivatives of the functions \(u \) and \(v \) with respect to \(r \) and \(\theta \) exist everywhere in the neighborhood, and

(b) those partial derivatives are continuous at \((r_0, \theta_0) \) and satisfy the polar form \(ru_r = v_\theta \) and \(u_\theta = -rv_r \) of the Cauchy-Riemann equations at \((r_0, \theta_0) \).

Then \(f'(z_0) = e^{-i\theta_0}(u_r(r_0, \theta_0) + iv_r(r_0, \theta_0)) \).

Example 2.23.2. Define \(f(z) = f(r \exp(i\theta)) = \sqrt[3]{r} \exp(i\theta/3) \) for \(r > 0, \alpha < \theta < \alpha + 2\pi \) for some fixed real \(\alpha \). This is “a cube root function.” We have

\[
u(r, \theta) = \sqrt[3]{r} \cos \left(\frac{\theta}{3}\right) \quad \text{and} \quad v(r, \theta) = \sqrt[3]{r} \sin \left(\frac{\theta}{3}\right), \quad \text{so}
\]

\[
u_r(r, \theta) = \frac{1}{3} r^{-2/3} \cos \left(\frac{\theta}{3}\right) = \frac{r^{1/3}}{3} \cos \left(\frac{\theta}{3}\right) = v_\theta(r, \theta) \quad \text{and}
\]

\[
u_\theta(r, \theta) = -\sqrt[3]{r} \sin \left(\frac{\theta}{3}\right) = -r \left(\frac{1}{3} r^{-2/3} \sin \left(\frac{\theta}{3}\right)\right) = -rv_r.
\]

So by Theorem 2.23.A, \(f \) is differentiable at all points at which it is defined and

\[
f'(z) = e^{-i\theta}(u_r(r, \theta) + iv_r(r, \theta)) = e^{-i\theta} \left(\frac{1}{3(\sqrt[3]{r})^2} \cos \left(\frac{\theta}{3}\right) + i \frac{1}{3(\sqrt[3]{r})^2} \sin \left(\frac{\theta}{3}\right)\right)
\]

\[
= \frac{e^{-i\theta}}{3(\sqrt[3]{r})^2} e^{i\theta/3} = \frac{1}{3(\sqrt[3]{r} e^{i\theta/3})^2}.
\]

Notice that this derivative is similar to what we would expect if we were to differentiate the real cube root function: \(f(x) = x^{1/3} \) implies \(f'(x) = \frac{1}{3} x^{-2/3} = \frac{1}{3x^{2/3}} \).

We cannot explore root functions in detail until after we introduce the exponential function \(e^z \) and complex logarithm functions.

Revised: 3/14/2020