Section 4.45. Proof of the Theorem

Note. We now prove the result from the previous section. We start by restating the result.

Theorem 4.44.A. Suppose that a function \(f(z) \) is continuous on a domain \(D \). The following are equivalent:

(a) \(f(z) \) has an antiderivative \(F(z) \) throughout \(D \);

(b) the integrals of \(f(z) \) along contours lying entirely in \(D \) and extending from any fixed point \(z_1 \) to any fixed point \(z_2 \) all have the same value, namely

\[
\int_{z_1}^{z_2} f(z) \, dz = F(z) \bigg|_{z_1}^{z_2} = F(z_2) - F(z_1)
\]

where \(F(z) \) is the antiderivative in statement (a);

(c) the integrals of \(f(z) \) around closed contours lying entirely in \(D \) all have value zero.

Proof. First we show (a) \(\implies \) (b). Suppose \(f(z) \) has an antiderivative \(F(z) \) on the domain \(D \). Let \(C \) be a contour from \(z_1 \) and \(z_2 \) that is smooth, lies in \(D \) and has parametric representation \(z = z(t) \) where \(a \leq t \leq b \). Then by Exercise 4.39.5 we have

\[
\frac{d}{dt} [F(z(t))] = F'(z(t))z'(t) = f(z(t))z'(t) \text{ where } a \leq t \leq b.
\]
So
\[\int_C f(z) \, dz = \int_Z f(z(t))z'(t) \, dt \text{ by definition (see Section 4.40)} \]
\[= F(z(t)) \big|_{t=a}^{t=b} = F(z(b)) - F(z(a)) \text{ by Note 4.38.A} \]
\[= F(z_2) - F(z_1) \text{ since } z_1 = z(a) \text{ and } z_2 = z(b) \]

So (b) holds in the event that \(C \) is smooth. Now a contour is piecewise smooth by definition (see Section 4.39), so for \(C \) any contour that is piecewise smooth, say \(C \) consists of the \(n \) smooth contours \(C_1, C_2, \ldots, C_n \) (with \(C_1 \) a smooth contour from \(z(a) = z_1 \) to \(z_2 \), \(C_2 \) a smooth contour from \(z_2 \) to \(z_3 \), \ldots, and \(C_n \) a smooth contour from \(z_n \) to \(z_{n+1} = z(b) \)), then
\[\int_C f(z) \, dz = \sum_{k=1}^{n} \int_{C_k} f(z) \, dz \text{ by Note 4.40.C and induction} \]
\[= \sum_{k=1}^{n} (F(z_{k+1}) - F(z_k)) \text{ by the proof above, since each } C_k \text{ is smooth} \]
\[= F(b) - F(a). \]

That is, (b) holds.

Next, we show (b) \(\implies \) (c). Suppose that integration of \(f(z) \) is independent of the contour in \(D \) and instead only depends on the endpoints of the contour. Let \(C \) be any closed contour in \(D \) and let \(z_1 \) and \(z_2 \) be two distinct points on \(C \). Form paths \(C_1 \) and \(C_2 \) (see Figure 53).

![Figure 53](image-url)
Since we hypothesize that the values of integrals are independent of contours, then we have \(\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz \) or, by Notes 4.40.B and 4.40.C,

\[
0 = \int_{C_1} f(z) \, dz - \int_{C_2} f(z) \, dz = \int_{C_1} f(z) \, dz + \int_{C_1-C_2} f(z) \, dz = \int_{C_1-C_2} f(z) \, dz = \int_C f(z) \, dz.
\]

So integrals of \(f(z) \) around closed contours lying entirely in \(D \) all have value zero and (c) holds.

Finally, we show \((c) \implies (a) \). Suppose integrals of \(f(z) \) around closed contours lying entirely in \(D \) all have value zero. Let \(C_1 \) and \(C_2 \) denote any two contours lying in \(D \) from a point \(z_1 \) to a point \(z_2 \). Then \(C = C_1 - C_2 \) is a closed contour in \(D \) and so by hypothesis,

\[
0 = \int_C f(z) \, dz = \int_{C_1-C_2} f(z) \, dz = \int_{C_1} f(z) \, dz - \int_{C_2} f(z) \, dz \text{ by Note 4.40.C}
\]

and so \(\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz \) (in fact, we have shown that \((c) \implies (b) \) here).

Let \(z_0 \in D \) and define function \(F(z) \) as \(F(z) = \int_{z_0}^z f(s) \, ds \) where \(z \in D \). The path independence of integrals shows that \(F \) is well-defined. We now show that \(F'(z) = f(z) \) on \(D \). Let \(z + \Delta z \) be any point distinct from \(z \) and lying in some neighborhood of \(z \) that is small enough to be contained in \(D \) (such a neighborhood exists since \(D \) is hypothesized to be open). Then

\[
F(z + \Delta z) - F(z) = \int_{z_0}^{z+\Delta z} f(s) \, ds - \int_{z_0}^z f(s) \, ds = \int_{z}^{z+\Delta z} f(s) \, ds \text{ by Note 4.40.C}.
\]

Since \(\Delta z \) lies in a neighborhood of \(z \) then we see that \(\Delta z \) may be selected as a line segment (see Figure 54).
Section 4.45. Proof of the Theorem

Since \(\int_{z}^{z+\Delta z} ds = \Delta z \) by Exercise 4.42.5 (Exercise 4.46.5 in the 9th edition of the book), we have

\[
\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(s) \, ds = \frac{f(z)}{\Delta z} \int_{z}^{z+\Delta z} ds = f(z).
\]

So

\[
\frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) = \frac{\int_{z_0}^{z+\Delta z} f(s) \, ds - \int_{z_0}^{z} f(s) \, ds}{\Delta z} = \frac{1}{\Delta z} \left(\int_{z}^{z+\Delta z} f(s) \, ds \right) - \frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) \, ds = \frac{1}{\Delta z} \int_{z}^{z+\Delta z} (f(s) - f(z)) \, ds.
\]

Since \(f \) is continuous at \(z \) by hypothesis, then for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(|f(s) - f(z)| < \varepsilon \) whenever \(|s - z| < \delta \). Consequently, if \(|\Delta z| < \delta \) then

\[
\left| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right| = \left| \frac{1}{\Delta z} \int_{z}^{z+\Delta z} (f(s) - f(z)) \, ds \right| < \frac{1}{|\Delta z|} \varepsilon |\Delta z| \text{ by Theorem 4.43.A}
\]

\[
= \varepsilon.
\]

So by the definition of limit (see Section 2.15),

\[
\lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z).
\]

That is, \(F'(z) = f(z) \) and so (a) holds. \(\blacksquare \)