Section 4.54. Maximum Modulus Principle

Note. In this section we present a major result which has many applications. Some of the applications are illustrated in the supplement to this section.

Lemma 4.54.A. Suppose that $|f(z)| \leq |f(z_0)|$ at each point z in some neighborhood $|z - z_0| < \varepsilon$ in which f is analytic. Then $|f(z)|$ has the constant value $f(z_0)$ throughout that neighborhood.

Note. We use Lemma 4.54.A to prove the Maximum Modulus Theorem, but first we elevate equation (2) from the proof of Lemma 4.51.A to the status of a theorem itself.

Theorem 4.54.B. Gauss’s Mean Value Theorem.

Let f be analytic on and inside the positively oriented circle $|z - z_0| = \rho$ centered at $z_0 \in \mathbb{C}$. Then

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + \rho e^{i\theta}) d\theta.$$

Note. Recall that, by definition, the average value of a real-valued function of a real variable f on $[a, b]$ is

$$\text{Av}(f) = \frac{1}{b - a} \int_{1}^{b} f(x) \, dx.$$

It is this sense that the term “mean” is used in Gauss’s Mean Value Theorem.
Theorem 4.54.C. The Maximum Modulus Theorem.

If a function \(f \) is analytic and not constant in a given domain \(D \), then \(|f(z)|\) has no maximum value in \(D \). That is, there is no point \(z_0 \in D \) such that \(|f(z)| \leq |f(z_0)|\) for all points \(z \in D \).

Theorem 4.54.D. Maximum Modulus Theorem, Alternative Version.

Suppose that a function \(f \) is continuous on a closed bounded region \(R \) and that it is analytic and not constant in the interior of \(R \). Then the maximum value of \(|f(z)|\) on \(R \), which is always reached (by Theorem 2.18.3) occurs somewhere on the boundary of \(R \) and never in the interior.

Theorem 4.54.E. Let \(f \) be continuous on a closed bounded region \(R \), and analytic and not constant on the interior of \(R \). For \(f(z) = u(x, y) + iv(x, y) \), where \(z = x + iy \), function \(u(x, y) \) attains its maximum value in \(R \) on the boundary of \(R \) and not in the interior.

Note. The proof of the following is to be given in Exercise 4.54.3.

Corollary 4.54.F. The Minimum Modulus Theorem.

Let a function \(f \) be continuous on a closed bounded region \(R \), and let it be analytic and not constant throughout the interior of \(R \). Assuming that \(f(z) \neq 0 \) anywhere in \(R \), then \(|f(z)|\) has a minimum value \(m \) in \(R \) and the minimum is attained at some boundary point of \(R \) and is never attained at an interior point of \(R \).
Note. Another version of the Maximum Modulus Theorem is the following, a proof of which is given in my online class notes for Complex Analysis (MATH 5510-20) on Section VI.1. The Maximum Principle.

Theorem 4.54.G. Maximum Modulus Theorem for Unbounded Domains (Simplified 1).
Let $r > 0$ and suppose f is analytic for $|z| > r$, continuous on $|z| = r$, bounded by M on $|z| = r$, and $\lim_{|z| \to \infty} |f(z)| \leq M$. Then $|f(z)| \leq M$ on $|z| \geq r$.

Revised: 1/27/2020