Section 6.76. Zeros and Poles

Note. We now relate the zeros of order \(m \) for an analytic function to the poles of order \(m \) in the reciprocal of the analytic function.

Theorem 6.76.1. Suppose that

(a) two functions \(p \) and \(q \) are analytic at a point \(z_0 \), and

(b) \(p(z_0) \neq 0 \) and \(q \) has a zero of order \(m \) at \(z_0 \).

Then the quotient \(p(z)/q(z) \) has a pole of order \(m \) at \(z_0 \).

Example 6.76.1. Let \(p(z) = 1 \) and \(z(z) = z(e^z - 1) \). Then \(p \) and \(q \) are entire and by Example 6.75.2, \(q \) has a zero of order \(m = 2 \) at \(z_0 = 0 \). So by Theorem 6.76.a, \(\frac{p(z)}{q(z)} = \frac{1}{z(e^z - 1)} \) has a pole of order 2 at \(z_0 = 0 \) (as we saw in Example 6.74.5).

Theorem 6.76.2. Let the functions \(p \) and \(q \) be analytic at \(z_0 \). If \(p(z_0) \neq 0 \), \(q(z_0) = 0 \), and \(q'(z_0) = 0 \) (that is, \(q \) has a zero of multiplicity one at \(z_0 \)) then \(z_0 \) is a simple pole of \(p/q \) and \(\text{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)} \).
Example 6.76.2. Consider \(f(z) = \cos z / \sin z = \cot z \). With \(p(z) = \cos z \) and \(q(z) = \sin z \). Since \(a(z) = \sin z = 0 \) for \(z = n\pi \) where \(n \in \mathbb{Z} \), \(q'(z) = \cos z \), \(q'(n\pi) = (-1)^n \neq 0 \), and \(p(n\pi) = (-1)^n \neq 0 \) then by Theorem 6.76.2, \(f \) has a simple pole at each \(n\pi \) where \(n \in \mathbb{Z} \) and

\[
\text{Res}_{z=n\pi} f(z) = \frac{p(n\pi)}{q'(n\pi)} = \frac{(-1)^n}{(-1)^n} = 1.
\]

Example 6.76.4. Consider \(f(z) = \frac{z}{z^4 + 4} \). Let \(p(z) = z \) and \(q(z) = z^4 + 4 \). Then for \(z_0 = \sqrt{2} \exp(i\pi/4) = 1 + i \) and \(p(z_0) = z_0 \neq 0 \), \(q(z_0) = 0 \), and \(q'(z_0) = 4z_0^3 \neq 0 \). So by Theorem 6.76.2, \(f \) has a simple pole at \(z_0 \), and the residue at \(z_0 \) is

\[
\text{Res}_{z=z_0} f(z) = \frac{p(z_0)}{q'(z_0)} = \frac{z_0}{4z_0^3} = \frac{1}{4z_0^2} = \frac{1}{4(2\exp(i\pi/2))} = \frac{1}{8i} = -\frac{i}{8}.
\]

Revised: 4/16/2018