Chapter 1. Complex Numbers

Study Guide

The following is a brief list of topics covered in Chapter 1 of Brown and Churchill’s *Complex Variables and Applications*, 8th edition. This list is not meant to be comprehensive, but only gives a list of several important topics. You should also carefully study the examples and proofs given in class and in the homework problems.

Section 1.1. Sums and Products.
Definition of the field of complex numbers \(\mathbb{C} \) in terms of ordered pairs of real numbers, real and imaginary axes, \(i = (0, 1), i^2 = -1 \), “FOIL” holds in \(\mathbb{C} \).

Section 1.2. Basic Algebraic Properties.
Properties of addition and multiplication as given in Theorem 1.2.1, \(\mathbb{C} \) has no zero divisors, computation of \(1/z \).

Section 1.3. Further Properties.
Addition with common denominators (Lemma 1.3.1), products of multiplicative inverses (Lemma 1.3.2), the Binomial Theorem (Theorem 1.3.2).

Section 1.4. Vectors and Moduli.
Modulus, the vector interpretation of complex numbers, the Triangle Inequality, other inequalities involving moduli (Corollary 1.4.1).

Section 1.5. Complex Conjugates.
Complex conjugate \(\overline{z} \), properties of conjugates (Theorem 1.5.1), the modulus of products and quotients (Theorem 1.5.2).

Section 1.6. Exponential Form.
Argument, principal value of the argument, Euler’s formula, exponential form \(z = re^{i\theta} \).

Section 1.7. Products and Powers in Exponential Form.
Products and quotients in exponential form (Theorem 1.7.1), powers in exponential form (Corollary 1.7.2), \((\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \) (Corollary 1.7.3).

Section 1.8. Arguments of Products and Quotients.
Arguments of products (Lemma 1.8.1), arguments of quotients (Lemma 1.8.2), finding arguments.

Section 1.9. Roots of Complex Numbers.
nth roots of unity, \(e^{i\theta} \) is periodic, computing nth roots, distribution of nth roots around a regular
n-gon, the principal nth root.

Section 1.10. Examples.
Computation of nth roots.

Section 1.11. Regions in the Complex Plane.
Use of modulus to measure distance, definition of ε neighborhood, and deleted ε neighborhood, interior point (of a set), exterior point, boundary point, boundary, classification of a boundary point (Lemma 1.11.A), open set, closed set, closure of a set, connected open set, polygonal line, domain, region, bounded/unbounded set, accumulation point, closed sets contain their accumulation points (Lemma 1.11.B), isolated point.

Revised: 1/4/2020