Graph Theory

Chapter 1. Graphs

1.1. Graphs and Their Representations—Proofs of Theorems

Graph Theory August 23, 2022

Corollary 1.

Corollary 1.2

Corollary 1.2. In any graph, the number of vertices of odd degree is even.

Proof. Let $V_1 = \{v \in V \mid d(v) \text{ is odd}\}$ and let $V_2 = \{v \in V \mid d(v) \text{ is even}\}$. Then

$$\sum_{v\in V_1} d(v) + \sum_{v\in V_2} d(v) = \sum_{v\in V} d(v).$$

Now $\sum_{v \in V_2} d(v)$ is even since each such d(v) is even and, by Theorem 1.1, $\sum_{v \in V} d(v)$ is even. Therefore $\sum_{v \in V_1} d(v)$ must also be even. Since each such d(v) is odd then $|V_1|$ must be even. That is, the number of vertices of odd degree is even, as claimed.

(This proof is from Bondy and Murty's *Graph Theory with Applications* (North Holland, 1976.)

Theorem 1.1

Theorem 1.1

Theorem 1.1. For any graph G, $\sum_{v \in V} d(v) = 2m$ where m = |E|.

Proof. Consider the incidence matrix \mathbf{M} of G. For given $v \in V$, entry m_{ve} is the number of times edge e is incident with vertex v. So as e ranges over set E, we have $\sum_{e \in E} m_{ve} = d(v)$. Now the row of \mathbf{M} corresponding to vertex v has exactly the entries m_{ve} where e ranges over edge set E. So the sum of the entries in this row is also d(v). Therefore $\sum_{v \in V} d(v)$ is the sum of all entries in \mathbf{M} . Now the sum of the entries of any column in \mathbf{M} is 2, since the column entries (of 0, 1, or 2) reflect the ends of the edge corresponding to that column, and each edge has 2 ends. The total number of columns is m = |E|, so the sum of all entries is \mathbf{M} is 2m. That is, $\sum_{v \in V} d(v) = 2m$, as claimed.

() Graph Theory August 23, 2022 3 / 7

Proposition 3

Proposition 1.3

Proposition 1.3. Let G[X,Y] be a bipartite graph without isolated vertices such that $d(x) \geq d(y)$ for all $x \in X$ and $y \in Y$ such that $\psi_G(e) = \{x,y\} = xy$ for some $e \in E$ (we abbreviate $\psi_G(e) = \{x,y\} = xy$ for some $e \in E$ simply as " $xy \in E$ "). Then $|X| \leq |Y|$, with equality if and only if d(x) = d(y) for all $xy \in E$.

Proof. Consider the bipartite adjacency matrix \mathbf{B} for G[X,Y]. Create matrix $\tilde{\mathbf{B}}$ by dividing the row of \mathbf{B} corresponding to vertex x by d(x), and do so for each $x \in X$ (notice that d(x) > 0 for each $x \in X$ since G has no isolated vertices by hypothesis). Since the sum of the entries in the row of \mathbf{B} corresponding to vertex x is d(x) (because \mathbf{B} is an adjacency matrix) then the sum of the entries of the row of $\tilde{\mathbf{B}}$ corresponding to vertex x is 1 and the sum of all entries in $\tilde{\mathbf{B}}$ is |X|(1) = |X|.

 Graph Theory
 August 23, 2022
 4 / 7

 ()
 Graph Theory
 August 23, 2022
 5 /

Proposition 1.3 (continued 1)

Proof (continued). The sum of the entries in the column of $\tilde{\mathbf{B}}$ corresponding to vertex $y \in Y$ is $\sum_{\{x \in X \mid xy \in E\}} \frac{1}{d(x)}$ (that is, the sum of the reciprocals of the degrees of the vertices in X which are adjacent to y). So the sum of all entries in $\tilde{\mathbf{B}}$ is also $\sum_{y \in Y} \sum_{\{x \in X \mid xy \in E\}} \frac{1}{d(x)}$. Since we have summed the entries of $\tilde{\mathbf{B}}$ in two ways, we have $|X| = \sum_{y \in Y} \sum_{\{x \in X \mid xy \in E\}} \frac{1}{d(x)}$. Now summing over all $y \in Y$ and $x \in X$ such that $x \in X$ is equivalent to summing over all $x \in X$ and $x \in X$ and $x \in X$ and $x \in X$.

Graph Theory

August 23, 2022

Proposition 1.3 (continued 2)

Proof (continued). So $|X| = \sum_{y \in Y} \sum_{\{x \in X \mid xy \in E\}} \frac{1}{d(x)} = \sum_{x \in X, y \in Y} \sum_{xy \in E} \frac{1}{d(x)}$ $\leq \sum_{x \in X, y \in Y} \sum_{xy \in E} \frac{1}{d(y)} \text{ since } d(x) \geq d(y) \text{ for all } xy \in E$ $= \sum_{x \in X} \sum_{\{y \in Y \mid xy \in E\}} \frac{1}{d(y)} \text{ as argued above}$

(with sets X and Y interchanged here)

= |Y| since the sum of the entries in the columns corresponding to vertex y sum to d(y) in \mathbf{B} and to 1 in $\tilde{\mathbf{B}}$ (similar to the rows, as described above).

reduces to an equality and this requires that d(x) = d(y) for all $xy \in E$, as claimed.

So $|X| \leq |Y|$. The only way to have equality is when the inequality above