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Chapter 1. Graphs
1.1. Graphs and Their Representations—Proofs of Theorems
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Theorem 1.1

Theorem 1.1

Theorem 1.1. For any graph G ,
∑

v∈V d(v) = 2m where m = |E |.

Proof. Consider the incidence matrix M of G . For given v ∈ V , entry mve

is the number of times edge e is incident with vertex v . So as e ranges
over set E , we have

∑
e∈E mve = d(v). Now the row of M corresponding

to vertex v has exactly the entries mve where e ranges over edge set E . So
the sum of the entries in this row is also d(v). Therefore

∑
v∈V d(v) is

the sum of all entries in M.

Now the sum of the entries of any column in
M is 2, since the column entries (of 0, 1, or 2) reflect the ends of the edge
corresponding to that column, and each edge has 2 ends. The total
number of columns is m = |E |, so the sum of all entries is M is 2m. That
is,

∑
v∈V d(v) = 2m, as claimed.
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Corollary 1.2

Corollary 1.2

Corollary 1.2. In any graph, the number of vertices of odd degree is even.

Proof. Let V1 = {v ∈ V | d(v) is odd} and let
V2 = {v ∈ V | d(v) is even}. Then∑

v∈V1

d(v) +
∑
v∈V2

d(v) =
∑
v∈V

d(v).

Now
∑

v∈V2
d(v) is even since each such d(v) is even and, by Theorem

1.1,
∑

v∈V d(v) is even. Therefore
∑

v∈V1
d(v) must also be even. Since

each such d(v) is odd then |V1| must be even. That is, the number of
vertices of odd degree is even, as claimed.

(This proof is from Bondy and Murty’s Graph Theory with Applications
(North Holland, 1976.)
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Proposition 1.3

Proposition 1.3

Proposition 1.3. Let G [X ,Y ] be a bipartite graph without isolated
vertices such that d(x) ≥ d(y) for all x ∈ X and y ∈ Y such that
ψG (e) = {x , y} = xy for some e ∈ E (we abbreviate ψG (e) = {x , y} = xy
for some e ∈ E simply as “xy ∈ E”). Then |X | ≤ |Y |, with equality if and
only if d(x) = d(y) for all xy ∈ E .

Proof. Consider the bipartite adjacency matrix B for G [X ,Y ]. Create
matrix B̃ by dividing the row of B corresponding to vertex x by d(x), and
do so for each x ∈ X (notice that d(x) > 0 for each x ∈ X since G has no
isolated vertices by hypothesis). Since the sum of the entries in the row of
B corresponding to vertex x is d(x) (because B is an adjacency matrix)
then the sum of the entries of the row of B̃ corresponding to vertex x is 1
and the sum of all entries in B̃ is |X |(1) = |X |.
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Proposition 1.3

Proposition 1.3 (continued 1)

Proof (continued). The sum of the entries in the column of B̃

corresponding to vertex y ∈ Y is
∑

{x∈X |xy∈E}

1

d(x)
(that is, the sum of the

reciprocals of the degrees of the vertices in X which are adjacent to y). So

the sum of all entries in B̃ is also
∑
y∈Y

∑
{x∈X |xy∈E}

1

d(x)
. Since we have

summed the entries of B̃ in two ways, we have |X | =
∑
y∈Y

∑
{x∈X |xy∈E}

1

d(x)
.

Now summing over all y ∈ Y and (x ∈ X such that xy ∈ E ) is equivalent
to summing over all (x ∈ X and y ∈ Y ) and xy ∈ E .
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Proposition 1.3

Proposition 1.3 (continued 2)

Proof (continued). So

|X | =
∑
y∈Y

∑
{x∈X |xy∈E}

1

d(x)
=

∑
x∈X ,y∈Y

∑
xy∈E

1

d(x)

≤
∑

x∈X ,y∈Y

∑
xy∈E

1

d(y)
since d(x) ≥ d(y) for all xy ∈ E

=
∑
x∈X

∑
{y∈Y |xy∈E}

1

d(y)
as argued above

(with sets X and Y interchanged here)

= |Y | since the sum of the entries in the columns corresponding

to vertex y sum to d(y) in B and to 1 in B̃

(similar to the rows, as described above).
So |X | ≤ |Y |. The only way to have equality is when the inequality above
reduces to an equality and this requires that d(x) = d(y) for all xy ∈ E ,
as claimed.
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