Graph Theory

Chapter 1. Graphs

1.1. Graphs and Their Representations—Proofs of Theorems

Table of contents

(1) Theorem 1.1
(2) Corollary 1.2
(3) Proposition 1.3

Theorem 1.1

Theorem 1.1. For any graph $G, \sum_{v \in V} d(v)=2 m$ where $m=|E|$.
Proof. Consider the incidence matrix \mathbf{M} of G. For given $v \in V$, entry $m_{v e}$ is the number of times edge e is incident with vertex v. So as e ranges over set E, we have $\sum_{e \in E} m_{v e}=d(v)$. Now the row of \mathbf{M} corresponding to vertex v has exactly the entries $m_{v e}$ where e ranges over edge set E. So the sum of the entries in this row is also $d(v)$. Therefore $\sum_{v \in V} d(v)$ is the sum of all entries in \mathbf{M}.

Theorem 1.1

Theorem 1.1. For any graph $G, \sum_{v \in V} d(v)=2 m$ where $m=|E|$.
Proof. Consider the incidence matrix \mathbf{M} of G. For given $v \in V$, entry $m_{v e}$ is the number of times edge e is incident with vertex v. So as e ranges over set E, we have $\sum_{e \in E} m_{v e}=d(v)$. Now the row of \mathbf{M} corresponding to vertex v has exactly the entries $m_{v e}$ where e ranges over edge set E. So the sum of the entries in this row is also $d(v)$. Therefore $\sum_{v \in V} d(v)$ is the sum of all entries in \mathbf{M}. Now the sum of the entries of any column in \mathbf{M} is 2, since the column entries (of 0,1 , or 2) reflect the ends of the edge corresponding to that column, and each edge has 2 ends. The total number of columns is $m=|E|$, so the sum of all entries is \mathbf{M} is $2 m$. That is, $\sum_{v \in V} d(v)=2 m$, as claimed.

Theorem 1.1

Theorem 1.1. For any graph $G, \sum_{v \in V} d(v)=2 m$ where $m=|E|$.
Proof. Consider the incidence matrix \mathbf{M} of G. For given $v \in V$, entry $m_{v e}$ is the number of times edge e is incident with vertex v. So as e ranges over set E, we have $\sum_{e \in E} m_{v e}=d(v)$. Now the row of \mathbf{M} corresponding to vertex v has exactly the entries $m_{v e}$ where e ranges over edge set E. So the sum of the entries in this row is also $d(v)$. Therefore $\sum_{v \in V} d(v)$ is the sum of all entries in \mathbf{M}. Now the sum of the entries of any column in \mathbf{M} is 2 , since the column entries (of 0,1 , or 2) reflect the ends of the edge corresponding to that column, and each edge has 2 ends. The total number of columns is $m=|E|$, so the sum of all entries is \mathbf{M} is $2 m$. That is, $\sum_{v \in V} d(v)=2 m$, as claimed.

Corollary 1.2

Corollary 1.2. In any graph, the number of vertices of odd degree is even.
Proof. Let $V_{1}=\{v \in V \mid d(v)$ is odd $\}$ and let
$V_{2}=\{v \in V \mid d(v)$ is even $\}$. Then

$$
\sum_{v \in V_{1}} d(v)+\sum_{v \in V_{2}} d(v)=\sum_{v \in V} d(v)
$$

Now $\sum_{v \in V_{2}} d(v)$ is even since each such $d(v)$ is even and, by Theorem 1.1, $\sum_{v \in V} d(v)$ is even. Therefore $\sum_{v \in V_{1}} d(v)$ must also be even. Since each such $d(v)$ is odd then $\left|V_{1}\right|$ must be even. That is, the number of vertices of odd degree is even, as claimed.

Corollary 1.2

Corollary 1.2. In any graph, the number of vertices of odd degree is even.
Proof. Let $V_{1}=\{v \in V \mid d(v)$ is odd $\}$ and let $V_{2}=\{v \in V \mid d(v)$ is even $\}$. Then

$$
\sum_{v \in V_{1}} d(v)+\sum_{v \in V_{2}} d(v)=\sum_{v \in V} d(v)
$$

Now $\sum_{v \in V_{2}} d(v)$ is even since each such $d(v)$ is even and, by Theorem 1.1, $\sum_{v \in V} d(v)$ is even. Therefore $\sum_{v \in V_{1}} d(v)$ must also be even. Since each such $d(v)$ is odd then $\left|V_{1}\right|$ must be even. That is, the number of vertices of odd degree is even, as claimed.
(This proof is from Bondy and Murty's Graph Theory with Applications (North Holland, 1976.)

Corollary 1.2

Corollary 1.2. In any graph, the number of vertices of odd degree is even.
Proof. Let $V_{1}=\{v \in V \mid d(v)$ is odd $\}$ and let $V_{2}=\{v \in V \mid d(v)$ is even $\}$. Then

$$
\sum_{v \in V_{1}} d(v)+\sum_{v \in V_{2}} d(v)=\sum_{v \in V} d(v)
$$

Now $\sum_{v \in V_{2}} d(v)$ is even since each such $d(v)$ is even and, by Theorem 1.1, $\sum_{v \in V} d(v)$ is even. Therefore $\sum_{v \in V_{1}} d(v)$ must also be even. Since each such $d(v)$ is odd then $\left|V_{1}\right|$ must be even. That is, the number of vertices of odd degree is even, as claimed.
(This proof is from Bondy and Murty's Graph Theory with Applications (North Holland, 1976.)

Proposition 1.3

Proposition 1.3. Let $G[X, Y]$ be a bipartite graph without isolated vertices such that $d(x) \geq d(y)$ for all $x \in X$ and $y \in Y$ such that $\psi_{G}(e)=\{x, y\}=x y$ for some $e \in E$ (we abbreviate $\psi_{G}(e)=\{x, y\}=x y$ for some $e \in E$ simply as " $x y \in E$ "). Then $|X| \leq|Y|$, with equality if and only if $d(x)=d(y)$ for all $x y \in E$.

Proof. Consider the bipartite adjacency matrix B for $G[X, Y]$. Create matrix $\tilde{\mathbf{B}}$ by dividing the row of \mathbf{B} corresponding to vertex x by $d(x)$, and do so for each $x \in X$ (notice that $d(x)>0$ for each $x \in X$ since G has no isolated vertices by hypothesis). Since the sum of the entries in the row of \mathbf{B} corresponding to vertex x is $d(x)$ (because \mathbf{B} is an adjacency matrix) then the sum of the entries of the row of $\tilde{\mathbf{B}}$ corresponding to vertex x is 1 and the sum of all entries in $\tilde{\mathbf{B}}$ is $|X|(1)=|X|$.

Proposition 1.3

Proposition 1.3. Let $G[X, Y]$ be a bipartite graph without isolated vertices such that $d(x) \geq d(y)$ for all $x \in X$ and $y \in Y$ such that $\psi_{G}(e)=\{x, y\}=x y$ for some $e \in E$ (we abbreviate $\psi_{G}(e)=\{x, y\}=x y$ for some $e \in E$ simply as " $x y \in E$ "). Then $|X| \leq|Y|$, with equality if and only if $d(x)=d(y)$ for all $x y \in E$.

Proof. Consider the bipartite adjacency matrix \mathbf{B} for $G[X, Y]$. Create matrix $\tilde{\mathbf{B}}$ by dividing the row of \mathbf{B} corresponding to vertex x by $d(x)$, and do so for each $x \in X$ (notice that $d(x)>0$ for each $x \in X$ since G has no isolated vertices by hypothesis). Since the sum of the entries in the row of \mathbf{B} corresponding to vertex x is $d(x)$ (because \mathbf{B} is an adjacency matrix) then the sum of the entries of the row of $\tilde{\mathbf{B}}$ corresponding to vertex x is 1 and the sum of all entries in $\tilde{\mathbf{B}}$ is $|X|(1)=|X|$.

Proposition 1.3 (continued 1)

Proof (continued). The sum of the entries in the column of $\tilde{\mathbf{B}}$ corresponding to vertex $y \in Y$ is $\sum_{\{x \in X \mid x y \in E\}} \frac{1}{d(x)}$ (that is, the sum of the reciprocals of the degrees of the vertices in X which are adjacent to y). So the sum of all entries in $\tilde{\mathbf{B}}$ is also $\sum_{y \in Y} \sum_{\{x \in X \mid x y \in E\}} \frac{1}{d(x)}$. Since we have
summed the entries of $\tilde{\mathbf{B}}$ in two ways, we have $|X|=\sum_{y \in Y} \sum_{\{x \in X \mid x y \in E\}} \frac{1}{d(x)}$ Now summing over all $y \in Y$ and $(x \in X$ such that $x y \in E)$ is equivalent to summing over all $(x \in X$ and $y \in Y)$ and $x y \in E$.

Proposition 1.3 (continued 1)

Proof (continued). The sum of the entries in the column of $\tilde{\mathbf{B}}$ corresponding to vertex $y \in Y$ is $\sum_{\{x \in X \mid x y \in E\}} \frac{1}{d(x)}$ (that is, the sum of the reciprocals of the degrees of the vertices in X which are adjacent to y). So the sum of all entries in $\tilde{\mathbf{B}}$ is also $\sum_{y \in Y} \sum_{\{x \in X \mid x y \in E\}} \frac{1}{d(x)}$. Since we have summed the entries of $\tilde{\mathbf{B}}$ in two ways, we have $|X|=\sum_{y \in Y} \sum_{\{x \in X \mid x y \in E\}} \frac{1}{d(x)}$. Now summing over all $y \in Y$ and $(x \in X$ such that $x y \in E)$ is equivalent to summing over all $(x \in X$ and $y \in Y)$ and $x y \in E$.

Proposition 1.3 (continued 2)

Proof (continued). So

$$
|X|=\sum_{y \in Y} \sum_{\{x \in X \mid x y \in E\}} \frac{1}{d(x)}=\sum_{x \in X, y \in Y} \sum_{x y \in E} \frac{1}{d(x)}
$$

$\leq \sum_{x \in X, y \in Y} \sum_{x y \in E} \frac{1}{d(y)}$ since $d(x) \geq d(y)$ for all $x y \in E$
$=\sum_{x \in X} \sum_{\{y \in Y \mid x y \in E\}} \frac{1}{d(y)}$ as argued above
(with sets X and Y interchanged here)
$=|Y|$ since the sum of the entries in the columns corresponding to vertex y sum to $d(y)$ in \mathbf{B} and to 1 in $\tilde{\mathbf{B}}$
(similar to the rows, as described above).
So $|X| \leq|Y|$. The only way to have equality is when the inequality above reduces to an equality and this requires that $d(x)=d(y)$ for all $x y \in E$, as claimed.

Proposition 1.3 (continued 2)

Proof (continued). So

$$
|X|=\sum_{y \in Y} \sum_{\{x \in X \mid x y \in E\}} \frac{1}{d(x)}=\sum_{x \in X, y \in Y} \sum_{x y \in E} \frac{1}{d(x)}
$$

$\leq \sum_{x \in X, y \in Y} \sum_{x y \in E} \frac{1}{d(y)}$ since $d(x) \geq d(y)$ for all $x y \in E$
$=\sum_{x \in X} \sum_{\{y \in Y \mid x y \in E\}} \frac{1}{d(y)}$ as argued above
(with sets X and Y interchanged here)
$=|Y|$ since the sum of the entries in the columns corresponding to vertex y sum to $d(y)$ in \mathbf{B} and to 1 in $\tilde{\mathbf{B}}$
(similar to the rows, as described above).
So $|X| \leq|Y|$. The only way to have equality is when the inequality above reduces to an equality and this requires that $d(x)=d(y)$ for all $x y \in E$, as claimed.

