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Chapter 10. Planar Graphs
10.1. Plane and Planar Graphs—Proofs of Theorems
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Theorem 10.2

Theorem 10.2. K5 is nonplanar.

Proof. ASSUME G = K5 is planar. Let G̃ be a planar embedding of K5,
with points v1, v2, v3, v4, v5. Since K5 is complete, any two points of G̃ are
joined by a line.

The cycle C = v1v2v3v1 is a simple closed curve in R2,
and the point v4 must lie either in int(C ) or in ext(C ). Without loss of
generality we can suppose v4 ∈ int(C ) (or else we can permute the roles of
v1, v2, v3, v4 and get a different cycle C and a different interior point).
Then the edges v1v4, v2v4, v3v4 all lie entirely in int(C ) (apart from their
end points v1, v2, v3):
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Theorem 10.2 (continued)

Theorem 10.2. K5 is nonplanar.

Proof (continued). Consider the cycles C1 = v2v3v4v2, C2 = v3v1v4v3,
and C3 = v1v2v4v1. We have vi ∈ ext(Ci ) for i = 1, 2, 3 (as seen in Figure
10.3 above). Now viv5 ∈ E (G̃ ) for i = 1, 2, 3, so by the Jordan Curve
Theorem we have v5 ∈ ext(Ci ) for i = 1, 2, 3 (for example, if v5 ∈ int(C1)
then the line joining v5 and v1 ∈ ext(C1) must intersect cycle C1,
contradicting the planarity of K5). So v5 ∈ ext(C ) as well.

But then the
line joining v4 and v5 crosses C by the Jordan Curve Theorem,
CONTRADICTING the planarity of K5. Hence the assumption that K5 is
planar is false and therefore K5 is nonplanar, as claimed.
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