Graph Theory

Chapter 10. Planar Graphs 10.1. Plane and Planar Graphs—Proofs of Theorems

Table of contents

Theorem 10.2. K_5 is nonplanar.

Proof. ASSUME $G = K_5$ is planar. Let \tilde{G} be a planar embedding of K_5 , with points v_1, v_2, v_3, v_4, v_5 . Since K_5 is complete, any two points of \tilde{G} are joined by a line.

Theorem 10.2. K_5 is nonplanar.

Proof. ASSUME $G = K_5$ is planar. Let \tilde{G} be a planar embedding of K_5 , with points v_1, v_2, v_3, v_4, v_5 . Since K_5 is complete, any two points of \tilde{G} are joined by a line. The cycle $C = v_1v_2v_3v_1$ is a simple closed curve in \mathbb{R}^2 , and the point v_4 must lie either in int(C) or in ext(C). Without loss of generality we can suppose $v_4 \in int(C)$ (or else we can permute the roles of v_1, v_2, v_3, v_4 and get a different cycle C and a different interior point).

Theorem 10.2. K_5 is nonplanar.

Proof. ASSUME $G = K_5$ is planar. Let \tilde{G} be a planar embedding of K_5 , with points v_1, v_2, v_3, v_4, v_5 . Since K_5 is complete, any two points of \tilde{G} are joined by a line. The cycle $C = v_1 v_2 v_3 v_1$ is a simple closed curve in \mathbb{R}^2 , and the point v_4 must lie either in int(C) or in ext(C). Without loss of generality we can suppose $v_4 \in int(C)$ (or else we can permute the roles of v_1, v_2, v_3, v_4 and get a different cycle C and a different interior point). Then the edges $v_1 v_4, v_2 v_4, v_3 v_4$ all lie entirely in int(C) (apart from their end points v_1, v_2, v_3):

Theorem 10.2. K_5 is nonplanar.

Proof. ASSUME $G = K_5$ is planar. Let \tilde{G} be a planar embedding of K_5 , with points v_1, v_2, v_3, v_4, v_5 . Since K_5 is complete, any two points of \tilde{G} are joined by a line. The cycle $C = v_1 v_2 v_3 v_1$ is a simple closed curve in \mathbb{R}^2 , and the point v_4 must lie either in $\operatorname{int}(C)$ or in $\operatorname{ext}(C)$. Without loss of generality we can suppose $v_4 \in \operatorname{int}(C)$ (or else we can permute the roles of v_1, v_2, v_3, v_4 and get a different cycle C and a different interior point). Then the edges $v_1 v_4, v_2 v_4, v_3 v_4$ all lie entirely in $\operatorname{int}(C)$ (apart from their end points v_1, v_2, v_3):

Theorem 10.2. K_5 is nonplanar.

Proof. ASSUME $G = K_5$ is planar. Let \tilde{G} be a planar embedding of K_5 , with points v_1, v_2, v_3, v_4, v_5 . Since K_5 is complete, any two points of \tilde{G} are joined by a line. The cycle $C = v_1 v_2 v_3 v_1$ is a simple closed curve in \mathbb{R}^2 , and the point v_4 must lie either in $\operatorname{int}(C)$ or in $\operatorname{ext}(C)$. Without loss of generality we can suppose $v_4 \in \operatorname{int}(C)$ (or else we can permute the roles of v_1, v_2, v_3, v_4 and get a different cycle C and a different interior point). Then the edges $v_1 v_4, v_2 v_4, v_3 v_4$ all lie entirely in $\operatorname{int}(C)$ (apart from their end points v_1, v_2, v_3):

Theorem 10.2 (continued)

Theorem 10.2. K₅ is nonplanar.

Proof (continued). Consider the cycles $C_1 = v_2v_3v_4v_2$, $C_2 = v_3v_1v_4v_3$, and $C_3 = v_1v_2v_4v_1$. We have $v_i \in ext(C_i)$ for i = 1, 2, 3 (as seen in Figure 10.3 above). Now $v_iv_5 \in E(\tilde{G})$ for i = 1, 2, 3, so by the Jordan Curve Theorem we have $v_5 \in ext(C_i)$ for i = 1, 2, 3 (for example, if $v_5 \in int(C_1)$ then the line joining v_5 and $v_1 \in ext(C_1)$ must intersect cycle C_1 , contradicting the planarity of K_5). So $v_5 \in ext(C)$ as well.

Theorem 10.2 (continued)

Theorem 10.2. K₅ is nonplanar.

Proof (continued). Consider the cycles $C_1 = v_2v_3v_4v_2$, $C_2 = v_3v_1v_4v_3$, and $C_3 = v_1v_2v_4v_1$. We have $v_i \in ext(C_i)$ for i = 1, 2, 3 (as seen in Figure 10.3 above). Now $v_iv_5 \in E(\tilde{G})$ for i = 1, 2, 3, so by the Jordan Curve Theorem we have $v_5 \in ext(C_i)$ for i = 1, 2, 3 (for example, if $v_5 \in int(C_1)$ then the line joining v_5 and $v_1 \in ext(C_1)$ must intersect cycle C_1 , contradicting the planarity of K_5). So $v_5 \in ext(C)$ as well. But then the line joining v_4 and v_5 crosses C by the Jordan Curve Theorem, CONTRADICTING the planarity of K_5 . Hence the assumption that K_5 is planar is false and therefore K_5 is nonplanar, as claimed.

Theorem 10.2 (continued)

Theorem 10.2. K₅ is nonplanar.

Proof (continued). Consider the cycles $C_1 = v_2v_3v_4v_2$, $C_2 = v_3v_1v_4v_3$, and $C_3 = v_1v_2v_4v_1$. We have $v_i \in ext(C_i)$ for i = 1, 2, 3 (as seen in Figure 10.3 above). Now $v_iv_5 \in E(\tilde{G})$ for i = 1, 2, 3, so by the Jordan Curve Theorem we have $v_5 \in ext(C_i)$ for i = 1, 2, 3 (for example, if $v_5 \in int(C_1)$ then the line joining v_5 and $v_1 \in ext(C_1)$ must intersect cycle C_1 , contradicting the planarity of K_5). So $v_5 \in ext(C)$ as well. But then the line joining v_4 and v_5 crosses C by the Jordan Curve Theorem, CONTRADICTING the planarity of K_5 . Hence the assumption that K_5 is planar is false and therefore K_5 is nonplanar, as claimed.