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Proposition 10.5

Theorem 10.5

Theorem 10.5. Let G be a planar graph and let f be a face in some
planar embedding of G . Then G admits a planar embedding whose out
face has the same boundary as f .

Proof. (This argument is based somewhat on geometric intuition.)
Consider an embedding G̃ of G on the sphere, which exists by Theorem
10.4 since G is hypothesized to be planar. Let f̃ be the face of G̃
corresponding to (plane) face f .

Let z be a point on the sphere in the
interior of f̃ . Let π(G̃ ) be the image of G̃ under stereographic projection
from z (so z itself is mapped to ∞ in the extended plane). Then π(G̃ ) is a
planar embedding (also, arguably, by Theorem 10.4) and face f̃ of G̃ is
mapped to the outer face of π(G̃ ) so that the boundary of π(f̃ ) is the
same as the boundary of f (in terms of the edges and vertices it contains),
as claimed.
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Theorem 10.7

Theorem 10.7

Theorem 10.7. In a nonseparable plane graph other than K1 or K2, each
face is bounded by a cycle.

Proof. Let G be a nonseparable plane graph, other than K1 or K2. Then
by Theorem 5.8 of Section 5.3. Ear Decompositions, G has an ear
decomposition, say G0,G1, . . . ,Gk , where G0 is a cycle, Gk = G , and for
0 ≤ i ≤ k − 1, Gi+1 = Gi ∪Pi is a nonseparable plane subgraph of G where
Pi is an ear of Gi . Since G0 is a cycle, the two faces of G0 (the “interior”
and “exterior” of the cycle by the Jordan Curve Theorem), then the two
faces of G0 are bounded by cycles.

We show the claim using induction.
Suppose that all faces of Gi are bounded by cycles where i ≥ 0 is given.
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Theorem 10.7

Theorem 10.7 (continued)

Theorem 10.7. In a nonseparable plane graph other than K1 or K2, each
face is bounded by a cycle.

Proof (continued). Since G is a plane graph then Gi+1 is a plane graph
and the ear Pi of Gi is contained (except for its end vertices) in some face
f of Gi . Each face of Gi other than f is a face of Gi+1 and so (by the
induction hypothesis) is bounded by a cycle. Now the face f of Gi (we can
view this as subdividing face f of Gi by adding a single edge and then
subdividing that edge by adding additional vertices). Each of these two
faces are also bound by cycles and so the result holds for i + 1 and Gi+1.
By induction the claim holds for all 0 ≤ i ≤ k and so holds for Gk = G , as
claimed.
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Corollary 10.8

Corollary 10.8

Corollary 10.8. In a loopless 3-connected plane graph, the neighbors of
any vertex lie on a common cycle.

Proof. Let G be a loopless 3-connected plane graph and let v be any
vertex of G . Since G is 3-connected then G − v is 2-connected and so is
nonseparable. So by Theorem 10.7 each face of G − v is bounded by a
cycle.

With f as the face of G − v which contains vertex v , then the
neighbors of v must lie on the cycle which bounds face f in graph G − v .
Since v is an arbitrary vertex of G , then the result holds.
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Proposition 10.9

Proposition 10.9

Proposition 10.9. A dual G ∗ of a plane graph G is connected.

“Proof.” Let G be a plane graph and G ∗ a plane dual of G . Consider two
vertices f ∗ and g∗ of G ∗. The faces of G partition the plane minus G ,
R2 \ G , into a finite number of pieces so we can start with face f and
“move” to face f1 (along edge e∗ in G ∗, where edge e of G separates faces
f and f1) and to face f2, . . . , and to face g (this is the weak part of the
proof).

This sequence of faces of G and edges of G ∗ determines a walk in
G ∗ from vertex f ∗ to vertex g∗ of G ∗. Therefore, since f ∗ and g∗ are
arbitrary vertices of G ∗, by Exercises 3.1.4 and 3.1.1, G ∗ is connected.
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Theorem 10.10

Theorem 10.10

Theorem 10.10. If G is a plane graph, then
∑

f ∈F d(f ) = 2m.

Proof. By the definition of dual, d(f ) = d(f ∗) for all f ∈ F (G ) and for
corresponding f ∗ ∈ V (G ∗). So∑
f ∈F (G)

d(f ) =
∑

f ∗∈V (G∗)

d(f ∗) = 2e(G ∗) by Theorem 1.1 applied to G ∗

= 2e(G ) since e(G ) = e(G ∗) by equation (10.1)

= 2m.
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Proposition 10.11

Proposition 10.11

Proposition 10.11. A simple connected plane graph is a triangulation if
and only if its dual is cubic.

Proof. Let G be a simple connected plane graph.

If G is a triangulation then by definition each face of G is degree three. So
in the dual G ∗, each vertex is of degree three (since d(f ) = d(f ∗) for each
f ∈ F (G ) by equation (10.1)) and hence G ∗ is cubic.

If G ∗ is cubic, then for each vertex f ∗ of G ∗ we have d(f ∗) = 3. So in
connected plane graph G , d(f ) = 3 for each face f of G . That is, G is a
triangulation.
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Proposition 10.12

Proposition 10.12

Proposition 10.12. Let G be a connected plane graph and let e be an
edge of G that is not a cut edge. Then (G \ e)∗ ∼= G ∗/e∗.

Proof. Because e is not a cut edge then by Note 10.2.A, the two faces f1
and f2 of G incident with e are distinct. Deleting e from G results in the
“amalgamation” of f1 and f2 into a single face f (in G̃ ; see Figure 10.12).

Figure 10.12. (a) G and G ∗, (b) G \ e and G ∗/e∗.
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Proposition 10.12

Proposition 10.12 (continued 1)

Proof (continued). Any face of G that is adjacent to f1 or f2 in G is
adjacent to f in G \ e. All other faces and adjacencies between faces are
unaffected by the deletion of edge e. In the dual plane graph G ∗ the two
vertices f ∗1 and f ∗2 corresponding to the faces f1 and f2 of G are identified
(we denote the common identified vertex as f ∗) after the deletion of edge e
(that is, we create the graph G ∗/e∗; see Note 10.2.B for properties of e∗).

Figure 10.12. (a) G and G ∗, (b) G \ e and G ∗/e∗.
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Proposition 10.12

Proposition 10.12 (continued 2)

Proposition 10.12. Let G be a connected plane graph and let e be an
edge of G that is not a cut edge. Then (G \ e)∗ ∼= G ∗/e∗.

Proof (continued). Any vertex of G ∗ that is adjacent to f ∗1 or adjacent
to f ∗2 is adjacent to f ∗ in G ∗/e∗ (as is the case for the corresponding face
of G \ e). Other adjacencies between faces of G \ e (and corresponding
vertices of (G \ e)∗) are the same as in G (and corresponding vertices in
G ∗). So (G \ e)∗ ∼= G ∗/e∗, as claimed.
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Proposition 10.13

Proposition 10.13

Proposition 10.13. Let G be a connected plane graph and let e be a link
(i.e., a nonloop) of G . Then (G/e)∗ ∼= G ∗ \ e∗.

Proof. Since G is connected then by Exercise 10.2.4 (or Exercise 10.2.6 in
some printings of the book) we have that G ∗∗ ∼= G . Since edge e is not a
loop of G by hypothesis, then by Note 10.2.B (actually the contrapositive
of Note 10.2.B) the edge e∗ is not a cut edge of G ∗. So G ∗ \ e∗ is
connected.

By Proposition 10.12, applied to graph G ∗ and edge e∗,

(G ∗ \ e∗)∗ ∼= G ∗∗/e∗∗ ∼= G/e.

Since G ∗∗ ∼= G , then taking duals we have

G ∗ \ e∗ ∼= ((G ∗ \ e∗)∗)∗ ∼= (G/e)∗,

as claimed.
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Theorem 10.14

Theorem 10.14

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Proof. Let G be a nonseparable plane graph. If G has no edges then G ∗

is the trivial graph K1 and K1 is nonseparable, so the result holds for
graphs with 0 edges. If G has one edge then G is isomorphic to K1 with a
loop attached (which has dual G ∗ ∼= K2 and K2 is nonseparable) or G is
isomorphic to K2 (which has dual K1 with a loop attached and K1 with a
loop is nonseparable). We now give an inductive proof on the number of
edges of G . We have the base cases of 0 edges and 1 edge established.

So
let G be a nonseparable graph with m ≥ 2 edges and suppose all
nonseparable plane graphs with less than m edges have nonseparable duals.
Then by Note 5.2.A, G is loopless. By Theorem 5.2, any two edges of a
nonseparable graph lie in a common cycle, so G has no cut edges. Let e be
an edge of G . Then by Exercise 5.3.2, either G \ e or G/e is nonseparable.
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Theorem 10.14

Theorem 10.14 (continued)

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Proof (continued). First, if G \ e is nonseparable (of course G \ e is a
plane graph since G is) then by Proposition 10.12, (G \ e)∗ ∼= G ∗/e∗ and
so by the induction hypothesis G ∗/e∗ (as the dual of G \ e) is
nonseparable. As observed above, e∗ is then neither a loop nor a cut edge
of G ∗. Then by Exercise 5.2.2(b), we have that G ∗ is nonseparable.
Second, if G/e is nonseparable (by Exercise 10.1.4(b), G/e is a plane
graph since G is) then by Proposition 10.13, (G/e)∗ ∼= G ∗/e∗ and so by
the induction hypothesis G ∗/e∗ (as a dual of G/e) is nonseparable. As
observed above, e∗ is then neither a loop nor a cut edge of G ∗. Then by
Exercise 5.2.2(a), we have that G ∗ is separable. In either case (that is,
G \ e or G/e is nonseparable) we have G ∗ is nonseparable.

Therefore, by
induction the result holds for all m ∈ N (the number of edges in
nonseparable plane graph G ), as claimed.
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so by the induction hypothesis G ∗/e∗ (as the dual of G \ e) is
nonseparable. As observed above, e∗ is then neither a loop nor a cut edge
of G ∗. Then by Exercise 5.2.2(b), we have that G ∗ is nonseparable.
Second, if G/e is nonseparable (by Exercise 10.1.4(b), G/e is a plane
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G \ e or G/e is nonseparable) we have G ∗ is nonseparable. Therefore, by
induction the result holds for all m ∈ N (the number of edges in
nonseparable plane graph G ), as claimed.
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Theorem 10.16

Theorem 10.16. Let G be a connected plane graph, and let G ∗ be a
plane dual of G . (a) If C is a cycle of G , then C ∗ is a bond of G ∗.

Proof. Let C be a cycle of G , and let X ∗ denote the set of vertices of G ∗

that lie in int(C ) (so these vertices correspond to the faces of G in
int(C )). Then the edge cut ∂(X ∗) in G ∗ satisfies ∂(X ∗) = C ∗.

By Proposition 10.15, the subgraph of G ∗ induced by X ∗, G ∗[X ∗], is
connected. By Note 10.2.D, the subgraph of G ∗ induced by V (G ∗) \ X ∗

(the vertices in ext(C )) is also connected. Therefore, by Theorem 2.15, C ∗

is a bond of G ∗.
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