Graph Theory

Chapter 10. Planar Graphs 10.2. Duality—Proofs of Theorems

Table of contents

- Proposition 10.5
 - 2 Theorem 10.7
- 3 Corollary 10.8
 - Proposition 10.9
- 5 Theorem 10.10
- 6 Proposition 10.11
- Proposition 10.12
- Proposition 10.13
 - Theorem 10.14
- 10 Theorem 10.16

Theorem 10.5. Let G be a planar graph and let f be a face in some planar embedding of G. Then G admits a planar embedding whose out face has the same boundary as f.

Proof. (This argument is based somewhat on geometric intuition.) Consider an embedding \tilde{G} of G on the sphere, which exists by Theorem 10.4 since G is hypothesized to be planar. Let \tilde{f} be the face of \tilde{G} corresponding to (plane) face f.

Theorem 10.5. Let G be a planar graph and let f be a face in some planar embedding of G. Then G admits a planar embedding whose out face has the same boundary as f.

Proof. (This argument is based somewhat on geometric intuition.) Consider an embedding \tilde{G} of G on the sphere, which exists by Theorem 10.4 since G is hypothesized to be planar. Let \tilde{f} be the face of \tilde{G} corresponding to (plane) face f. Let z be a point on the sphere in the interior of \tilde{f} . Let $\pi(\tilde{G})$ be the image of \tilde{G} under stereographic projection from z (so z itself is mapped to ∞ in the extended plane). **Theorem 10.5.** Let G be a planar graph and let f be a face in some planar embedding of G. Then G admits a planar embedding whose out face has the same boundary as f.

Proof. (This argument is based somewhat on geometric intuition.) Consider an embedding \tilde{G} of G on the sphere, which exists by Theorem 10.4 since G is hypothesized to be planar. Let \tilde{f} be the face of \tilde{G} corresponding to (plane) face f. Let z be a point on the sphere in the interior of \tilde{f} . Let $\pi(\tilde{G})$ be the image of \tilde{G} under stereographic projection from z (so z itself is mapped to ∞ in the extended plane). Then $\pi(\tilde{G})$ is a planar embedding (also, arguably, by Theorem 10.4) and face \tilde{f} of \tilde{G} is mapped to the outer face of $\pi(\tilde{G})$ so that the boundary of $\pi(\tilde{f})$ is the same as the boundary of f (in terms of the edges and vertices it contains), as claimed. **Theorem 10.5.** Let G be a planar graph and let f be a face in some planar embedding of G. Then G admits a planar embedding whose out face has the same boundary as f.

Proof. (This argument is based somewhat on geometric intuition.) Consider an embedding \tilde{G} of G on the sphere, which exists by Theorem 10.4 since G is hypothesized to be planar. Let \tilde{f} be the face of \tilde{G} corresponding to (plane) face f. Let z be a point on the sphere in the interior of \tilde{f} . Let $\pi(\tilde{G})$ be the image of \tilde{G} under stereographic projection from z (so z itself is mapped to ∞ in the extended plane). Then $\pi(\tilde{G})$ is a planar embedding (also, arguably, by Theorem 10.4) and face \tilde{f} of \tilde{G} is mapped to the outer face of $\pi(\tilde{G})$ so that the boundary of $\pi(\tilde{f})$ is the same as the boundary of f (in terms of the edges and vertices it contains), as claimed.

Theorem 10.7. In a nonseparable plane graph other than K_1 or K_2 , each face is bounded by a cycle.

Proof. Let *G* be a nonseparable plane graph, other than K_1 or K_2 . Then by Theorem 5.8 of Section 5.3. Ear Decompositions, *G* has an ear decomposition, say G_0, G_1, \ldots, G_k , where G_0 is a cycle, $G_k = G$, and for $0 \le i \le k-1$, $G_{i+1} = G_i \cup P_i$ is a nonseparable plane subgraph of *G* where P_i is an ear of G_i . Since G_0 is a cycle, the two faces of G_0 (the "interior" and "exterior" of the cycle by the Jordan Curve Theorem), then the two faces of G_0 are bounded by cycles.

()

Theorem 10.7. In a nonseparable plane graph other than K_1 or K_2 , each face is bounded by a cycle.

Proof. Let *G* be a nonseparable plane graph, other than K_1 or K_2 . Then by Theorem 5.8 of Section 5.3. Ear Decompositions, *G* has an ear decomposition, say G_0, G_1, \ldots, G_k , where G_0 is a cycle, $G_k = G$, and for $0 \le i \le k-1$, $G_{i+1} = G_i \cup P_i$ is a nonseparable plane subgraph of *G* where P_i is an ear of G_i . Since G_0 is a cycle, the two faces of G_0 (the "interior" and "exterior" of the cycle by the Jordan Curve Theorem), then the two faces of G_0 are bounded by cycles. We show the claim using induction. Suppose that all faces of G_i are bounded by cycles where $i \ge 0$ is given. **Theorem 10.7.** In a nonseparable plane graph other than K_1 or K_2 , each face is bounded by a cycle.

Proof. Let *G* be a nonseparable plane graph, other than K_1 or K_2 . Then by Theorem 5.8 of Section 5.3. Ear Decompositions, *G* has an ear decomposition, say G_0, G_1, \ldots, G_k , where G_0 is a cycle, $G_k = G$, and for $0 \le i \le k-1$, $G_{i+1} = G_i \cup P_i$ is a nonseparable plane subgraph of *G* where P_i is an ear of G_i . Since G_0 is a cycle, the two faces of G_0 (the "interior" and "exterior" of the cycle by the Jordan Curve Theorem), then the two faces of G_0 are bounded by cycles. We show the claim using induction. Suppose that all faces of G_i are bounded by cycles where $i \ge 0$ is given.

Theorem 10.7 (continued)

Theorem 10.7. In a nonseparable plane graph other than K_1 or K_2 , each face is bounded by a cycle.

Proof (continued). Since *G* is a plane graph then G_{i+1} is a plane graph and the ear P_i of G_i is contained (except for its end vertices) in some face *f* of G_i . Each face of G_i other than *f* is a face of G_{i+1} and so (by the induction hypothesis) is bounded by a cycle. Now the face *f* of G_i (we can view this as subdividing face *f* of G_i by adding a single edge and then subdividing that edge by adding additional vertices). Each of these two faces are also bound by cycles and so the result holds for i + 1 and G_{i+1} . By induction the claim holds for all $0 \le i \le k$ and so holds for $G_k = G$, as claimed.

Theorem 10.7 (continued)

Theorem 10.7. In a nonseparable plane graph other than K_1 or K_2 , each face is bounded by a cycle.

Proof (continued). Since *G* is a plane graph then G_{i+1} is a plane graph and the ear P_i of G_i is contained (except for its end vertices) in some face *f* of G_i . Each face of G_i other than *f* is a face of G_{i+1} and so (by the induction hypothesis) is bounded by a cycle. Now the face *f* of G_i (we can view this as subdividing face *f* of G_i by adding a single edge and then subdividing that edge by adding additional vertices). Each of these two faces are also bound by cycles and so the result holds for i + 1 and G_{i+1} . By induction the claim holds for all $0 \le i \le k$ and so holds for $G_k = G$, as claimed.

Corollary 10.8. In a loopless 3-connected plane graph, the neighbors of any vertex lie on a common cycle.

Proof. Let *G* be a loopless 3-connected plane graph and let *v* be any vertex of *G*. Since *G* is 3-connected then G - v is 2-connected and so is nonseparable. So by Theorem 10.7 each face of G - v is bounded by a cycle.

Corollary 10.8. In a loopless 3-connected plane graph, the neighbors of any vertex lie on a common cycle.

Proof. Let *G* be a loopless 3-connected plane graph and let *v* be any vertex of *G*. Since *G* is 3-connected then G - v is 2-connected and so is nonseparable. So by Theorem 10.7 each face of G - v is bounded by a cycle. With *f* as the face of G - v which contains vertex *v*, then the neighbors of *v* must lie on the cycle which bounds face *f* in graph G - v. Since *v* is an arbitrary vertex of *G*, then the result holds.

Corollary 10.8. In a loopless 3-connected plane graph, the neighbors of any vertex lie on a common cycle.

Proof. Let *G* be a loopless 3-connected plane graph and let *v* be any vertex of *G*. Since *G* is 3-connected then G - v is 2-connected and so is nonseparable. So by Theorem 10.7 each face of G - v is bounded by a cycle. With *f* as the face of G - v which contains vertex *v*, then the neighbors of *v* must lie on the cycle which bounds face *f* in graph G - v. Since *v* is an arbitrary vertex of *G*, then the result holds.

Proposition 10.9. A dual G^* of a plane graph G is connected.

"Proof." Let *G* be a plane graph and *G*^{*} a plane dual of *G*. Consider two vertices f^* and g^* of G^* . The faces of *G* partition the plane minus *G*, $\mathbb{R}^2 \setminus G$, into a finite number of pieces so we can start with face *f* and "move" to face f_1 (along edge e^* in G^* , where edge *e* of *G* separates faces *f* and f_1) and to face f_2, \ldots , and to face *g* (this is the weak part of the proof).

Graph Theory

Proposition 10.9. A dual G^* of a plane graph G is connected.

"Proof." Let *G* be a plane graph and *G*^{*} a plane dual of *G*. Consider two vertices f^* and g^* of G^* . The faces of *G* partition the plane minus *G*, $\mathbb{R}^2 \setminus G$, into a finite number of pieces so we can start with face *f* and "move" to face f_1 (along edge e^* in G^* , where edge *e* of *G* separates faces *f* and f_1) and to face f_2, \ldots , and to face *g* (this is the weak part of the proof). This sequence of faces of *G* and edges of G^* determines a walk in G^* from vertex f^* to vertex g^* of G^* . Therefore, since f^* and g^* are arbitrary vertices of G^* , by Exercises 3.1.4 and 3.1.1, G^* is connected.

Proposition 10.9. A dual G^* of a plane graph G is connected.

"Proof." Let *G* be a plane graph and *G*^{*} a plane dual of *G*. Consider two vertices f^* and g^* of G^* . The faces of *G* partition the plane minus *G*, $\mathbb{R}^2 \setminus G$, into a finite number of pieces so we can start with face *f* and "move" to face f_1 (along edge e^* in G^* , where edge *e* of *G* separates faces *f* and f_1) and to face f_2, \ldots , and to face *g* (this is the weak part of the proof). This sequence of faces of *G* and edges of G^* determines a walk in G^* from vertex f^* to vertex g^* of G^* . Therefore, since f^* and g^* are arbitrary vertices of G^* , by Exercises 3.1.4 and 3.1.1, G^* is connected.

Graph Theory

Theorem 10.10. If G is a plane graph, then $\sum_{f \in F} d(f) = 2m$.

Proof. By the definition of dual, $d(f) = d(f^*)$ for all $f \in F(G)$ and for corresponding $f^* \in V(G^*)$. So

$$\sum_{f \in F(G)} d(f) = \sum_{f^* \in V(G^*)} d(f^*) = 2e(G^*) \text{ by Theorem 1.1 applied to } G^*$$
$$= 2e(G) \text{ since } e(G) = e(G^*) \text{ by equation (10.1)}$$
$$= 2m.$$

Theorem 10.10. If G is a plane graph, then $\sum_{f \in F} d(f) = 2m$.

Proof. By the definition of dual, $d(f) = d(f^*)$ for all $f \in F(G)$ and for corresponding $f^* \in V(G^*)$. So

$$\sum_{f \in F(G)} d(f) = \sum_{\substack{f^* \in V(G^*) \\ = 2e(G) \text{ since } e(G) = e(G^*) \text{ by Preorem 1.1 applied to } G^* \\ = 2e(G) \text{ since } e(G) = e(G^*) \text{ by equation (10.1)} \\ = 2m.$$

Proposition 10.11. A simple connected plane graph is a triangulation if and only if its dual is cubic.

Proof. Let *G* be a simple connected plane graph.

If G is a triangulation then by definition each face of G is degree three. So in the dual G^* , each vertex is of degree three (since $d(f) = d(f^*)$ for each $f \in F(G)$ by equation (10.1)) and hence G^* is cubic.

Graph Theory

Proposition 10.11. A simple connected plane graph is a triangulation if and only if its dual is cubic.

Proof. Let G be a simple connected plane graph.

If G is a triangulation then by definition each face of G is degree three. So in the dual G^* , each vertex is of degree three (since $d(f) = d(f^*)$ for each $f \in F(G)$ by equation (10.1)) and hence G^* is cubic.

If G^* is cubic, then for each vertex f^* of G^* we have $d(f^*) = 3$. So in connected plane graph G, d(f) = 3 for each face f of G. That is, G is a triangulation.

Proposition 10.11. A simple connected plane graph is a triangulation if and only if its dual is cubic.

Proof. Let G be a simple connected plane graph.

If G is a triangulation then by definition each face of G is degree three. So in the dual G^* , each vertex is of degree three (since $d(f) = d(f^*)$ for each $f \in F(G)$ by equation (10.1)) and hence G^* is cubic.

If G^* is cubic, then for each vertex f^* of G^* we have $d(f^*) = 3$. So in connected plane graph G, d(f) = 3 for each face f of G. That is, G is a triangulation.

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G that is not a cut edge. Then $(G \setminus e)^* \cong G^*/e^*$.

Proof. Because *e* is not a cut edge then by Note 10.2.A, the two faces f_1 and f_2 of *G* incident with *e* are distinct. Deleting *e* from *G* results in the "amalgamation" of f_1 and f_2 into a single face *f* (in \tilde{G} ; see Figure 10.12).

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G that is not a cut edge. Then $(G \setminus e)^* \cong G^*/e^*$.

Proof. Because *e* is not a cut edge then by Note 10.2.A, the two faces f_1 and f_2 of *G* incident with *e* are distinct. Deleting *e* from *G* results in the "amalgamation" of f_1 and f_2 into a single face *f* (in \tilde{G} ; see Figure 10.12).

Figure 10.12. (a) G and G^* , (b) $G \setminus e$ and G^*/e^* .

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G that is not a cut edge. Then $(G \setminus e)^* \cong G^*/e^*$.

Proof. Because *e* is not a cut edge then by Note 10.2.A, the two faces f_1 and f_2 of *G* incident with *e* are distinct. Deleting *e* from *G* results in the "amalgamation" of f_1 and f_2 into a single face *f* (in \tilde{G} ; see Figure 10.12).

Figure 10.12. (a) G and G^* , (b) $G \setminus e$ and G^*/e^* .

Proposition 10.12 (continued 1)

Proof (continued). Any face of *G* that is adjacent to f_1 or f_2 in *G* is adjacent to *f* in $G \setminus e$. All other faces and adjacencies between faces are unaffected by the deletion of edge *e*. In the dual plane graph G^* the two vertices f_1^* and f_2^* corresponding to the faces f_1 and f_2 of *G* are identified (we denote the common identified vertex as f^*) after the deletion of edge *e* (that is, we create the graph G^*/e^* ; see Note 10.2.B for properties of e^*).

Figure 10.12. (a) *G* and *G*^{*}, (b) $G \setminus e$ and G^*/e^* .

Proposition 10.12 (continued 1)

Proof (continued). Any face of *G* that is adjacent to f_1 or f_2 in *G* is adjacent to *f* in $G \setminus e$. All other faces and adjacencies between faces are unaffected by the deletion of edge *e*. In the dual plane graph G^* the two vertices f_1^* and f_2^* corresponding to the faces f_1 and f_2 of *G* are identified (we denote the common identified vertex as f^*) after the deletion of edge *e* (that is, we create the graph G^*/e^* ; see Note 10.2.B for properties of e^*).

Figure 10.12. (a) G and G^* , (b) $G \setminus e$ and G^*/e^* .

Proposition 10.12 (continued 2)

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G that is not a cut edge. Then $(G \setminus e)^* \cong G^*/e^*$.

Proof (continued). Any vertex of G^* that is adjacent to f_1^* or adjacent to f_2^* is adjacent to f^* in G^*/e^* (as is the case for the corresponding face of $G \setminus e$). Other adjacencies between faces of $G \setminus e$ (and corresponding vertices of $(G \setminus e)^*$) are the same as in G (and corresponding vertices in G^*). So $(G \setminus e)^* \cong G^*/e^*$, as claimed.

Proposition 10.13. Let G be a connected plane graph and let e be a link (i.e., a nonloop) of G. Then $(G/e)^* \cong G^* \setminus e^*$.

Proof. Since *G* is connected then by Exercise 10.2.4 (or Exercise 10.2.6 in some printings of the book) we have that $G^{**} \cong G$. Since edge *e* is not a loop of *G* by hypothesis, then by Note 10.2.B (actually the contrapositive of Note 10.2.B) the edge e^* is not a cut edge of G^* . So $G^* \setminus e^*$ is connected.

Proposition 10.13. Let G be a connected plane graph and let e be a link (i.e., a nonloop) of G. Then $(G/e)^* \cong G^* \setminus e^*$.

Proof. Since *G* is connected then by Exercise 10.2.4 (or Exercise 10.2.6 in some printings of the book) we have that $G^{**} \cong G$. Since edge *e* is not a loop of *G* by hypothesis, then by Note 10.2.B (actually the contrapositive of Note 10.2.B) the edge e^* is not a cut edge of G^* . So $G^* \setminus e^*$ is connected. By Proposition 10.12, applied to graph G^* and edge e^* ,

$$(G^* \setminus e^*)^* \cong G^{**}/e^{**} \cong G/e.$$

Since $G^{**} \cong G$, then taking duals we have

$$G^* \setminus e^* \cong ((G^* \setminus e^*)^*)^* \cong (G/e)^*,$$

as claimed.

Proposition 10.13. Let G be a connected plane graph and let e be a link (i.e., a nonloop) of G. Then $(G/e)^* \cong G^* \setminus e^*$.

Proof. Since *G* is connected then by Exercise 10.2.4 (or Exercise 10.2.6 in some printings of the book) we have that $G^{**} \cong G$. Since edge *e* is not a loop of *G* by hypothesis, then by Note 10.2.B (actually the contrapositive of Note 10.2.B) the edge e^* is not a cut edge of G^* . So $G^* \setminus e^*$ is connected. By Proposition 10.12, applied to graph G^* and edge e^* ,

$$(G^* \setminus e^*)^* \cong G^{**}/e^{**} \cong G/e.$$

Since $G^{**} \cong G$, then taking duals we have

$$G^* \setminus e^* \cong ((G^* \setminus e^*)^*)^* \cong (G/e)^*,$$

as claimed.

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Proof. Let *G* be a nonseparable plane graph. If *G* has no edges then G^* is the trivial graph K_1 and K_1 is nonseparable, so the result holds for graphs with 0 edges. If *G* has one edge then *G* is isomorphic to K_1 with a loop attached (which has dual $G^* \cong K_2$ and K_2 is nonseparable) or *G* is isomorphic to K_2 (which has dual K_1 with a loop attached and K_1 with a loop is nonseparable). We now give an inductive proof on the number of edges of *G*. We have the base cases of 0 edges and 1 edge established.

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Proof. Let G be a nonseparable plane graph. If G has no edges then G^* is the trivial graph K_1 and K_1 is nonseparable, so the result holds for graphs with 0 edges. If G has one edge then G is isomorphic to K_1 with a loop attached (which has dual $G^* \cong K_2$ and K_2 is nonseparable) or G is isomorphic to K_2 (which has dual K_1 with a loop attached and K_1 with a loop is nonseparable). We now give an inductive proof on the number of edges of G. We have the base cases of 0 edges and 1 edge established. So let G be a nonseparable graph with $m \ge 2$ edges and suppose all nonseparable plane graphs with less than *m* edges have nonseparable duals. Then by Note 5.2.A, G is loopless. By Theorem 5.2, any two edges of a nonseparable graph lie in a common cycle, so G has no cut edges. Let e be an edge of G. Then by Exercise 5.3.2, either $G \setminus e$ or G/e is nonseparable.

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Proof. Let G be a nonseparable plane graph. If G has no edges then G^* is the trivial graph K_1 and K_1 is nonseparable, so the result holds for graphs with 0 edges. If G has one edge then G is isomorphic to K_1 with a loop attached (which has dual $G^* \cong K_2$ and K_2 is nonseparable) or G is isomorphic to K_2 (which has dual K_1 with a loop attached and K_1 with a loop is nonseparable). We now give an inductive proof on the number of edges of G. We have the base cases of 0 edges and 1 edge established. So let G be a nonseparable graph with $m \ge 2$ edges and suppose all nonseparable plane graphs with less than m edges have nonseparable duals. Then by Note 5.2.A, G is loopless. By Theorem 5.2, any two edges of a nonseparable graph lie in a common cycle, so G has no cut edges. Let e be an edge of G. Then by Exercise 5.3.2, either $G \setminus e$ or G/e is nonseparable.

Theorem 10.14 (continued)

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Proof (continued). First, if $G \setminus e$ is nonseparable (of course $G \setminus e$ is a plane graph since G is) then by Proposition 10.12, $(G \setminus e)^* \cong G^*/e^*$ and so by the induction hypothesis G^*/e^* (as the dual of $G \setminus e$) is nonseparable. As observed above, e^* is then neither a loop nor a cut edge of G^* . Then by Exercise 5.2.2(b), we have that G^* is nonseparable. Second, if G/e is nonseparable (by Exercise 10.1.4(b), G/e is a plane graph since G is) then by Proposition 10.13, $(G/e)^* \cong G^*/e^*$ and so by the induction hypothesis G^*/e^* (as a dual of G/e) is nonseparable. As observed above, e^* is then neither a loop nor a cut edge of G^* . Then by Exercise 5.2.2(a), we have that G^* is separable. In either case (that is, $G \setminus e$ or G/e is nonseparable) we have G^* is nonseparable.

Theorem 10.14 (continued)

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Proof (continued). First, if $G \setminus e$ is nonseparable (of course $G \setminus e$ is a plane graph since G is) then by Proposition 10.12, $(G \setminus e)^* \cong G^*/e^*$ and so by the induction hypothesis G^*/e^* (as the dual of $G \setminus e$) is nonseparable. As observed above, e^* is then neither a loop nor a cut edge of G^* . Then by Exercise 5.2.2(b), we have that G^* is nonseparable. Second, if G/e is nonseparable (by Exercise 10.1.4(b), G/e is a plane graph since G is) then by Proposition 10.13, $(G/e)^* \cong G^*/e^*$ and so by the induction hypothesis G^*/e^* (as a dual of G/e) is nonseparable. As observed above, e^* is then neither a loop nor a cut edge of G^* . Then by Exercise 5.2.2(a), we have that G^* is separable. In either case (that is, $G \setminus e$ or G/e is nonseparable) we have G^* is nonseparable. Therefore, by induction the result holds for all $m \in \mathbb{N}$ (the number of edges in nonseparable plane graph G), as claimed.

Theorem 10.14 (continued)

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.

Proof (continued). First, if $G \setminus e$ is nonseparable (of course $G \setminus e$ is a plane graph since G is) then by Proposition 10.12, $(G \setminus e)^* \cong G^*/e^*$ and so by the induction hypothesis G^*/e^* (as the dual of $G \setminus e$) is nonseparable. As observed above, e^* is then neither a loop nor a cut edge of G^* . Then by Exercise 5.2.2(b), we have that G^* is nonseparable. Second, if G/e is nonseparable (by Exercise 10.1.4(b), G/e is a plane graph since G is) then by Proposition 10.13, $(G/e)^* \cong G^*/e^*$ and so by the induction hypothesis G^*/e^* (as a dual of G/e) is nonseparable. As observed above, e^* is then neither a loop nor a cut edge of G^* . Then by Exercise 5.2.2(a), we have that G^* is separable. In either case (that is, $G \setminus e$ or G/e is nonseparable) we have G^* is nonseparable. Therefore, by induction the result holds for all $m \in \mathbb{N}$ (the number of edges in nonseparable plane graph G), as claimed.

Theorem 10.16. Let G be a connected plane graph, and let G^* be a plane dual of G. (a) If C is a cycle of G, then C^* is a bond of G^* .

Proof. Let C be a cycle of G, and let X^* denote the set of vertices of G^* that lie in int(C) (so these vertices correspond to the faces of G in int(C)). Then the edge cut $\partial(X^*)$ in G^* satisfies $\partial(X^*) = C^*$.

Theorem 10.16

Theorem 10.16. Let G be a connected plane graph, and let G^* be a plane dual of G. (a) If C is a cycle of G, then C^* is a bond of G^* .

Proof. Let *C* be a cycle of *G*, and let X^* denote the set of vertices of G^* that lie in int(*C*) (so these vertices correspond to the faces of *G* in int(*C*)). Then the edge cut $\partial(X^*)$ in G^* satisfies $\partial(X^*) = C^*$.

Theorem 10.16

Theorem 10.16. Let G be a connected plane graph, and let G^* be a plane dual of G. (a) If C is a cycle of G, then C^* is a bond of G^* .

Proof. Let *C* be a cycle of *G*, and let X^* denote the set of vertices of G^* that lie in int(*C*) (so these vertices correspond to the faces of *G* in int(*C*)). Then the edge cut $\partial(X^*)$ in G^* satisfies $\partial(X^*) = C^*$.

By Proposition 10.15, the subgraph of G^* induced by X^* , $G^*[X^*]$, is connected. By Note 10.2.D, the subgraph of G^* induced by $V(G^*) \setminus X^*$ (the vertices in ext(C)) is also connected. Therefore, by Theorem 2.15, C^* is a bond of G^* .

()

Theorem 10.16

Theorem 10.16. Let G be a connected plane graph, and let G^* be a plane dual of G. (a) If C is a cycle of G, then C^* is a bond of G^* .

Proof. Let *C* be a cycle of *G*, and let X^* denote the set of vertices of G^* that lie in int(*C*) (so these vertices correspond to the faces of *G* in int(*C*)). Then the edge cut $\partial(X^*)$ in G^* satisfies $\partial(X^*) = C^*$.

By Proposition 10.15, the subgraph of G^* induced by X^* , $G^*[X^*]$, is connected. By Note 10.2.D, the subgraph of G^* induced by $V(G^*) \setminus X^*$ (the vertices in ext(*C*)) is also connected. Therefore, by Theorem 2.15, C^* is a bond of G^* .

(