Graph Theory

Chapter 10. Planar Graphs
 10.2. Duality—Proofs of Theorems

Table of contents

(1) Proposition 10.5
(2) Theorem 10.7
(3) Corollary 10.8
(4) Proposition 10.9
(5) Theorem 10.10
(6) Proposition 10.11
(7) Proposition 10.12
(8) Proposition 10.13
(9) Theorem 10.14
(10) Theorem 10.16

Theorem 10.5

Theorem 10.5. Let G be a planar graph and let f be a face in some planar embedding of G. Then G admits a planar embedding whose out face has the same boundary as f.

Proof. (This argument is based somewhat on geometric intuition.) Consider an embedding \tilde{G} of G on the sphere, which exists by Theorem 10.4 since G is hypothesized to be planar. Let \tilde{f} be the face of \tilde{G} corresponding to (plane) face f.

Theorem 10.5

Theorem 10.5. Let G be a planar graph and let f be a face in some planar embedding of G. Then G admits a planar embedding whose out face has the same boundary as f.

Proof. (This argument is based somewhat on geometric intuition.) Consider an embedding \tilde{G} of G on the sphere, which exists by Theorem 10.4 since G is hypothesized to be planar. Let \tilde{f} be the face of \tilde{G} corresponding to (plane) face f. Let z be a point on the sphere in the interior of \tilde{f}. Let $\pi(\tilde{G})$ be the image of \tilde{G} under stereographic projection from z (so z itself is mapped to ∞ in the extended plane).

Theorem 10.5

Theorem 10.5. Let G be a planar graph and let f be a face in some planar embedding of G. Then G admits a planar embedding whose out face has the same boundary as f.

Proof. (This argument is based somewhat on geometric intuition.) Consider an embedding \tilde{G} of G on the sphere, which exists by Theorem 10.4 since G is hypothesized to be planar. Let \tilde{f} be the face of \tilde{G} corresponding to (plane) face f. Let z be a point on the sphere in the interior of \tilde{f}. Let $\pi(\tilde{G})$ be the image of \tilde{G} under stereographic projection from z (so z itself is mapped to ∞ in the extended plane).
planar embedding (also, arguably, by Theorem 10.4) and face \tilde{f} of \tilde{G} is mapped to the outer face of $\pi(\tilde{G})$ so that the boundary of $\pi(\tilde{f})$ is the same as the boundary of f (in terms of the edges and vertices it contains), as claimed.

Theorem 10.5

Theorem 10.5. Let G be a planar graph and let f be a face in some planar embedding of G. Then G admits a planar embedding whose out face has the same boundary as f.

Proof. (This argument is based somewhat on geometric intuition.) Consider an embedding \tilde{G} of G on the sphere, which exists by Theorem 10.4 since G is hypothesized to be planar. Let \tilde{f} be the face of \tilde{G} corresponding to (plane) face f. Let z be a point on the sphere in the interior of \tilde{f}. Let $\pi(\tilde{G})$ be the image of \tilde{G} under stereographic projection from z (so z itself is mapped to ∞ in the extended plane). Then $\pi(\tilde{G})$ is a planar embedding (also, arguably, by Theorem 10.4) and face \tilde{f} of \tilde{G} is mapped to the outer face of $\pi(\tilde{G})$ so that the boundary of $\pi(\tilde{f})$ is the same as the boundary of f (in terms of the edges and vertices it contains), as claimed.

Theorem 10.7

Theorem 10.7. In a nonseparable plane graph other than K_{1} or K_{2}, each face is bounded by a cycle.

Proof. Let G be a nonseparable plane graph, other than K_{1} or K_{2}. Then by Theorem 5.8 of Section 5.3. Ear Decompositions, G has an ear decomposition, say $G_{0}, G_{1}, \ldots, G_{k}$, where G_{0} is a cycle, $G_{k}=G$, and for $0 \leq i \leq k-1, G_{i+1}=G_{i} \cup P_{i}$ is a nonseparable plane subgraph of G where P_{i} is an ear of G_{i}. Since G_{0} is a cycle, the two faces of G_{0} (the "interior" and "exterior" of the cycle by the Jordan Curve Theorem), then the two faces of G_{0} are bounded by cycles.

Theorem 10.7

Theorem 10.7. In a nonseparable plane graph other than K_{1} or K_{2}, each face is bounded by a cycle.

Proof. Let G be a nonseparable plane graph, other than K_{1} or K_{2}. Then by Theorem 5.8 of Section 5.3. Ear Decompositions, G has an ear decomposition, say $G_{0}, G_{1}, \ldots, G_{k}$, where G_{0} is a cycle, $G_{k}=G$, and for $0 \leq i \leq k-1, G_{i+1}=G_{i} \cup P_{i}$ is a nonseparable plane subgraph of G where P_{i} is an ear of G_{i}. Since G_{0} is a cycle, the two faces of G_{0} (the "interior" and "exterior" of the cycle by the Jordan Curve Theorem), then the two faces of G_{0} are bounded by cycles. We show the claim using induction. Suppose that all faces of G_{i} are bounded by cycles where $i \geq 0$ is given.

Theorem 10.7

Theorem 10.7. In a nonseparable plane graph other than K_{1} or K_{2}, each face is bounded by a cycle.

Proof. Let G be a nonseparable plane graph, other than K_{1} or K_{2}. Then by Theorem 5.8 of Section 5.3. Ear Decompositions, G has an ear decomposition, say $G_{0}, G_{1}, \ldots, G_{k}$, where G_{0} is a cycle, $G_{k}=G$, and for $0 \leq i \leq k-1, G_{i+1}=G_{i} \cup P_{i}$ is a nonseparable plane subgraph of G where P_{i} is an ear of G_{i}. Since G_{0} is a cycle, the two faces of G_{0} (the "interior" and "exterior" of the cycle by the Jordan Curve Theorem), then the two faces of G_{0} are bounded by cycles. We show the claim using induction. Suppose that all faces of G_{i} are bounded by cycles where $i \geq 0$ is given.

Theorem 10.7 (continued)

Theorem 10.7. In a nonseparable plane graph other than K_{1} or K_{2}, each face is bounded by a cycle.

Proof (continued). Since G is a plane graph then G_{i+1} is a plane graph and the ear P_{i} of G_{i} is contained (except for its end vertices) in some face f of G_{i}. Each face of G_{i} other than f is a face of G_{i+1} and so (by the induction hypothesis) is bounded by a cycle. Now the face f of G_{i} (we can view this as subdividing face f of G_{i} by adding a single edge and then subdividing that edge by adding additional vertices). Each of these two faces are also bound by cycles and so the result holds for $i+1$ and G_{i+1} By induction the claim holds for all $0 \leq i \leq k$ and so holds for $G_{k}=G$, as claimed.

Theorem 10.7 (continued)

Theorem 10.7. In a nonseparable plane graph other than K_{1} or K_{2}, each face is bounded by a cycle.

Proof (continued). Since G is a plane graph then G_{i+1} is a plane graph and the ear P_{i} of G_{i} is contained (except for its end vertices) in some face f of G_{i}. Each face of G_{i} other than f is a face of G_{i+1} and so (by the induction hypothesis) is bounded by a cycle. Now the face f of G_{i} (we can view this as subdividing face f of G_{i} by adding a single edge and then subdividing that edge by adding additional vertices). Each of these two faces are also bound by cycles and so the result holds for $i+1$ and G_{i+1}. By induction the claim holds for all $0 \leq i \leq k$ and so holds for $G_{k}=G$, as claimed.

Corollary 10.8

Corollary 10.8. In a loopless 3-connected plane graph, the neighbors of any vertex lie on a common cycle.

Proof. Let G be a loopless 3-connected plane graph and let v be any vertex of G. Since G is 3 -connected then $G-v$ is 2 -connected and so is nonseparable. So by Theorem 10.7 each face of $G-v$ is bounded by a cycle.

Corollary 10.8

Corollary 10.8. In a loopless 3-connected plane graph, the neighbors of any vertex lie on a common cycle.

Proof. Let G be a loopless 3-connected plane graph and let v be any vertex of G. Since G is 3 -connected then $G-v$ is 2 -connected and so is nonseparable. So by Theorem 10.7 each face of $G-v$ is bounded by a cycle. With f as the face of $G-v$ which contains vertex v, then the neighbors of v must lie on the cycle which bounds face f in graph $G-v$ Since v is an arbitrary vertex of G, then the result holds.

Corollary 10.8

Corollary 10.8. In a loopless 3-connected plane graph, the neighbors of any vertex lie on a common cycle.

Proof. Let G be a loopless 3-connected plane graph and let v be any vertex of G. Since G is 3 -connected then $G-v$ is 2 -connected and so is nonseparable. So by Theorem 10.7 each face of $G-v$ is bounded by a cycle. With f as the face of $G-v$ which contains vertex v, then the neighbors of v must lie on the cycle which bounds face f in graph $G-v$. Since v is an arbitrary vertex of G, then the result holds.

Proposition 10.9

Proposition 10.9. A dual G^{*} of a plane graph G is connected.
"Proof." Let G be a plane graph and G^{*} a plane dual of G. Consider two vertices f^{*} and g^{*} of G^{*}. The faces of G partition the plane minus G, $\mathbb{R}^{2} \backslash G$, into a finite number of pieces so we can start with face f and "move" to face f_{1} (along edge e^{*} in G^{*}, where edge e of G separates faces f and f_{1}) and to face f_{2}, \ldots, and to face g (this is the weak part of the proof).

Proposition 10.9

Proposition 10.9. A dual G^{*} of a plane graph G is connected.
"Proof." Let G be a plane graph and G^{*} a plane dual of G. Consider two vertices f^{*} and g^{*} of G^{*}. The faces of G partition the plane minus G, $\mathbb{R}^{2} \backslash G$, into a finite number of pieces so we can start with face f and "move" to face f_{1} (along edge e^{*} in G^{*}, where edge e of G separates faces f and f_{1}) and to face f_{2}, \ldots, and to face g (this is the weak part of the proof). This sequence of faces of G and edges of G^{*} determines a walk in G^{*} from vertex f^{*} to vertex g^{*} of G^{*}. Therefore, since f^{*} and g^{*} are arbitrary vertices of G^{*}, by Exercises 3.1.4 and 3.1.1, G^{*} is connected.

Proposition 10.9

Proposition 10.9. A dual G^{*} of a plane graph G is connected.
"Proof." Let G be a plane graph and G^{*} a plane dual of G. Consider two vertices f^{*} and g^{*} of G^{*}. The faces of G partition the plane minus G, $\mathbb{R}^{2} \backslash G$, into a finite number of pieces so we can start with face f and "move" to face f_{1} (along edge e^{*} in G^{*}, where edge e of G separates faces f and f_{1}) and to face f_{2}, \ldots, and to face g (this is the weak part of the proof). This sequence of faces of G and edges of G^{*} determines a walk in G^{*} from vertex f^{*} to vertex g^{*} of G^{*}. Therefore, since f^{*} and g^{*} are arbitrary vertices of G^{*}, by Exercises 3.1.4 and 3.1.1, G^{*} is connected.

Theorem 10.10

Theorem 10.10. If G is a plane graph, then $\sum_{f \in F} d(f)=2 m$.

Proof. By the definition of dual, $d(f)=d\left(f^{*}\right)$ for all $f \in F(G)$ and for corresponding $f^{*} \in V\left(G^{*}\right)$. So

Theorem 10.10

Theorem 10.10. If G is a plane graph, then $\sum_{f \in F} d(f)=2 m$.

Proof. By the definition of dual, $d(f)=d\left(f^{*}\right)$ for all $f \in F(G)$ and for corresponding $f^{*} \in V\left(G^{*}\right)$. So

$$
\begin{aligned}
\sum_{f \in F(G)} d(f) & =\sum_{f^{*} \in V\left(G^{*}\right)} d\left(f^{*}\right)=2 e\left(G^{*}\right) \text { by Theorem } 1.1 \text { applied to } G^{*} \\
& =2 e(G) \text { since } e(G)=e\left(G^{*}\right) \text { by equation }(10.1) \\
& =2 m
\end{aligned}
$$

Proposition 10.11

Proposition 10.11. A simple connected plane graph is a triangulation if and only if its dual is cubic.

Proof. Let G be a simple connected plane graph.
If G is a triangulation then by definition each face of G is degree three. So in the dual G^{*}, each vertex is of degree three (since $d(f)=d\left(f^{*}\right)$ for each $f \in F(G)$ by equation (10.1)) and hence G^{*} is cubic.

Proposition 10.11

Proposition 10.11. A simple connected plane graph is a triangulation if and only if its dual is cubic.

Proof. Let G be a simple connected plane graph.
If G is a triangulation then by definition each face of G is degree three. So in the dual G^{*}, each vertex is of degree three (since $d(f)=d\left(f^{*}\right)$ for each $f \in F(G)$ by equation (10.1)) and hence G^{*} is cubic.

If G^{*} is cubic, then for each vertex f^{*} of G^{*} we have $d\left(f^{*}\right)=3$. So in connected plane graph $G, d(f)=3$ for each face f of G. That is, G is a triangulation.

Proposition 10.11

Proposition 10.11. A simple connected plane graph is a triangulation if and only if its dual is cubic.

Proof. Let G be a simple connected plane graph.
If G is a triangulation then by definition each face of G is degree three. So in the dual G^{*}, each vertex is of degree three (since $d(f)=d\left(f^{*}\right)$ for each $f \in F(G)$ by equation (10.1)) and hence G^{*} is cubic.

If G^{*} is cubic, then for each vertex f^{*} of G^{*} we have $d\left(f^{*}\right)=3$. So in connected plane graph $G, d(f)=3$ for each face f of G. That is, G is a triangulation.

Proposition 10.12

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G that is not a cut edge. Then $(G \backslash e)^{*} \cong G^{*} / e^{*}$.

Proof. Because e is not a cut edge then by Note 10.2.A, the two faces f_{1} and f_{2} of G incident with e are distinct. Deleting e from G results in the "amalgamation" of f_{1} and f_{2} into a single face f (in \tilde{G}; see Figure 10.12).

Proposition 10.12

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G that is not a cut edge. Then $(G \backslash e)^{*} \cong G^{*} / e^{*}$.

Proof. Because e is not a cut edge then by Note 10.2.A, the two faces f_{1} and f_{2} of G incident with e are distinct. Deleting e from G results in the "amalgamation" of f_{1} and f_{2} into a single face f (in \tilde{G}; see Figure 10.12).

(a)

(b)

Figure 10.12. (a) G and G^{*}, (b) $G \backslash e$ and G^{*} / e^{*}.

Proposition 10.12

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G that is not a cut edge. Then $(G \backslash e)^{*} \cong G^{*} / e^{*}$.

Proof. Because e is not a cut edge then by Note 10.2.A, the two faces f_{1} and f_{2} of G incident with e are distinct. Deleting e from G results in the "amalgamation" of f_{1} and f_{2} into a single face f (in \tilde{G}; see Figure 10.12).

(a)

(b)

Figure 10.12. (a) G and G^{*}, (b) $G \backslash e$ and G^{*} / e^{*}.

Proposition 10.12 (continued 1)

Proof (continued). Any face of G that is adjacent to f_{1} or f_{2} in G is adjacent to f in $G \backslash e$. All other faces and adjacencies between faces are unaffected by the deletion of edge e. In the dual plane graph G^{*} the two vertices f_{1}^{*} and f_{2}^{*} corresponding to the faces f_{1} and f_{2} of G are identified (we denote the common identified vertex as f^{*}) after the deletion of edge e (that is, we create the graph G^{*} / e^{*}; see Note 10.2.B for properties of e^{*}).

(a)

(b)

Figure 10.12. (a) G and G^{*}, (b) $G \backslash e$ and G^{*} / e^{*}

Proposition 10.12 (continued 1)

Proof (continued). Any face of G that is adjacent to f_{1} or f_{2} in G is adjacent to f in $G \backslash e$. All other faces and adjacencies between faces are unaffected by the deletion of edge e. In the dual plane graph G^{*} the two vertices f_{1}^{*} and f_{2}^{*} corresponding to the faces f_{1} and f_{2} of G are identified (we denote the common identified vertex as f^{*}) after the deletion of edge e (that is, we create the graph G^{*} / e^{*}; see Note 10.2.B for properties of e^{*}).

(a)

(b)

Figure 10.12. (a) G and G^{*}, (b) $G \backslash e$ and G^{*} / e^{*}.

Proposition 10.12 (continued 2)

Proposition 10.12. Let G be a connected plane graph and let e be an edge of G that is not a cut edge. Then $(G \backslash e)^{*} \cong G^{*} / e^{*}$.

Proof (continued). Any vertex of G^{*} that is adjacent to f_{1}^{*} or adjacent to f_{2}^{*} is adjacent to f^{*} in G^{*} / e^{*} (as is the case for the corresponding face of $G \backslash e$). Other adjacencies between faces of $G \backslash e$ (and corresponding vertices of $\left.(G \backslash e)^{*}\right)$ are the same as in G (and corresponding vertices in G^{*}). So $(G \backslash e)^{*} \cong G^{*} / e^{*}$, as claimed.

Proposition 10.13

Proposition 10.13. Let G be a connected plane graph and let e be a link (i.e., a nonloop) of G. Then $(G / e)^{*} \cong G^{*} \backslash e^{*}$.

Proof. Since G is connected then by Exercise 10.2.4 (or Exercise 10.2.6 in some printings of the book) we have that $G^{* *} \cong G$. Since edge e is not a loop of G by hypothesis, then by Note 10.2.B (actually the contrapositive of Note 10.2.B) the edge e^{*} is not a cut edge of G^{*}. So $G^{*} \backslash e^{*}$ is connected.

Proposition 10.13

Proposition 10.13. Let G be a connected plane graph and let e be a link (i.e., a nonloop) of G. Then $(G / e)^{*} \cong G^{*} \backslash e^{*}$.

Proof. Since G is connected then by Exercise 10.2.4 (or Exercise 10.2.6 in some printings of the book) we have that $G^{* *} \cong G$. Since edge e is not a loop of G by hypothesis, then by Note 10.2.B (actually the contrapositive of Note 10.2.B) the edge e^{*} is not a cut edge of G^{*}. So $G^{*} \backslash e^{*}$ is connected. By Proposition 10.12, applied to graph G^{*} and edge e^{*},

$$
\left(G^{*} \backslash e^{*}\right)^{*} \cong G^{* *} / e^{* *} \cong G / e .
$$

Since $G^{* *} \cong G$, then taking duals we have

$$
G^{*} \backslash e^{*} \cong\left(\left(G^{*} \backslash e^{*}\right)^{*}\right)^{*} \cong(G / e)^{*},
$$

Proposition 10.13

Proposition 10.13. Let G be a connected plane graph and let e be a link (i.e., a nonloop) of G. Then $(G / e)^{*} \cong G^{*} \backslash e^{*}$.

Proof. Since G is connected then by Exercise 10.2.4 (or Exercise 10.2.6 in some printings of the book) we have that $G^{* *} \cong G$. Since edge e is not a loop of G by hypothesis, then by Note 10.2.B (actually the contrapositive of Note 10.2.B) the edge e^{*} is not a cut edge of G^{*}. So $G^{*} \backslash e^{*}$ is connected. By Proposition 10.12, applied to graph G^{*} and edge e^{*},

$$
\left(G^{*} \backslash e^{*}\right)^{*} \cong G^{* *} / e^{* *} \cong G / e .
$$

Since $G^{* *} \cong G$, then taking duals we have

$$
G^{*} \backslash e^{*} \cong\left(\left(G^{*} \backslash e^{*}\right)^{*}\right)^{*} \cong(G / e)^{*},
$$

as claimed.

Theorem 10.14

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.
Proof. Let G be a nonseparable plane graph. If G has no edges then G^{*} is the trivial graph K_{1} and K_{1} is nonseparable, so the result holds for graphs with 0 edges. If G has one edge then G is isomorphic to K_{1} with a loop attached (which has dual $G^{*} \cong K_{2}$ and K_{2} is nonseparable) or G is isomorphic to K_{2} (which has dual K_{1} with a loop attached and K_{1} with a loop is nonseparable). We now give an inductive proof on the number of edges of G. We have the base cases of 0 edges and 1 edge established.

Theorem 10.14

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.
Proof. Let G be a nonseparable plane graph. If G has no edges then G^{*} is the trivial graph K_{1} and K_{1} is nonseparable, so the result holds for graphs with 0 edges. If G has one edge then G is isomorphic to K_{1} with a loop attached (which has dual $G^{*} \cong K_{2}$ and K_{2} is nonseparable) or G is isomorphic to K_{2} (which has dual K_{1} with a loop attached and K_{1} with a loop is nonseparable). We now give an inductive proof on the number of edges of G. We have the base cases of 0 edges and 1 edge established. So let G be a nonseparable graph with $m \geq 2$ edges and suppose all nonseparable plane graphs with less than m edges have nonseparable duals. Then by Note 5.2.A, G is loopless. By Theorem 5.2, any two edges of a nonseparable graph lie in a common cycle, so G has no cut edges. Let e be an edge of G. Then by Exercise 5.3.2, either $G \backslash e$ or G / e is nonseparable.

Theorem 10.14

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable.
Proof. Let G be a nonseparable plane graph. If G has no edges then G^{*} is the trivial graph K_{1} and K_{1} is nonseparable, so the result holds for graphs with 0 edges. If G has one edge then G is isomorphic to K_{1} with a loop attached (which has dual $G^{*} \cong K_{2}$ and K_{2} is nonseparable) or G is isomorphic to K_{2} (which has dual K_{1} with a loop attached and K_{1} with a loop is nonseparable). We now give an inductive proof on the number of edges of G. We have the base cases of 0 edges and 1 edge established. So let G be a nonseparable graph with $m \geq 2$ edges and suppose all nonseparable plane graphs with less than m edges have nonseparable duals. Then by Note 5.2.A, G is loopless. By Theorem 5.2, any two edges of a nonseparable graph lie in a common cycle, so G has no cut edges. Let e be an edge of G. Then by Exercise 5.3.2, either $G \backslash e$ or G / e is nonseparable.

Theorem 10.14 (continued)

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable. Proof (continued). First, if $G \backslash e$ is nonseparable (of course $G \backslash e$ is a plane graph since G is) then by Proposition 10.12, $(G \backslash e)^{*} \cong G^{*} / e^{*}$ and so by the induction hypothesis G^{*} / e^{*} (as the dual of $G \backslash e$) is nonseparable. As observed above, e^{*} is then neither a loop nor a cut edge of G^{*}. Then by Exercise 5.2.2(b), we have that G^{*} is nonseparable. Second, if G / e is nonseparable (by Exercise 10.1.4(b), G / e is a plane graph since G is) then by Proposition 10.13, $(G / e)^{*} \cong G^{*} / e^{*}$ and so by the induction hypothesis G^{*} / e^{*} (as a dual of G / e) is nonseparable. As observed above, e^{*} is then neither a loop nor a cut edge of G^{*}. Then by Exercise 5.2.2(a), we have that G^{*} is separable. In either case (that is, $G \backslash e$ or G / e is nonseparable) we have G^{*} is nonseparable.

Theorem 10.14 (continued)

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable. Proof (continued). First, if $G \backslash e$ is nonseparable (of course $G \backslash e$ is a plane graph since G is) then by Proposition 10.12, $(G \backslash e)^{*} \cong G^{*} / e^{*}$ and so by the induction hypothesis G^{*} / e^{*} (as the dual of $G \backslash e$) is nonseparable. As observed above, e^{*} is then neither a loop nor a cut edge of G^{*}. Then by Exercise 5.2.2(b), we have that G^{*} is nonseparable. Second, if G / e is nonseparable (by Exercise 10.1.4(b), G / e is a plane graph since G is) then by Proposition 10.13, $(G / e)^{*} \cong G^{*} / e^{*}$ and so by the induction hypothesis G^{*} / e^{*} (as a dual of G / e) is nonseparable. As observed above, e^{*} is then neither a loop nor a cut edge of G^{*}. Then by Exercise 5.2.2(a), we have that G^{*} is separable. In either case (that is, $G \backslash e$ or G / e is nonseparable) we have G^{*} is nonseparable. Therefore, by induction the result holds for all $m \in \mathbb{N}$ (the number of edges in nonseparable plane graph G), as claimed.

Theorem 10.14 (continued)

Theorem 10.14. The dual of a nonseparable plane graph is nonseparable. Proof (continued). First, if $G \backslash e$ is nonseparable (of course $G \backslash e$ is a plane graph since G is) then by Proposition 10.12, $(G \backslash e)^{*} \cong G^{*} / e^{*}$ and so by the induction hypothesis G^{*} / e^{*} (as the dual of $G \backslash e$) is nonseparable. As observed above, e^{*} is then neither a loop nor a cut edge of G^{*}. Then by Exercise 5.2.2(b), we have that G^{*} is nonseparable. Second, if G / e is nonseparable (by Exercise 10.1.4(b), G / e is a plane graph since G is) then by Proposition 10.13, $(G / e)^{*} \cong G^{*} / e^{*}$ and so by the induction hypothesis G^{*} / e^{*} (as a dual of G / e) is nonseparable. As observed above, e^{*} is then neither a loop nor a cut edge of G^{*}. Then by Exercise 5.2.2(a), we have that G^{*} is separable. In either case (that is, $G \backslash e$ or G / e is nonseparable) we have G^{*} is nonseparable. Therefore, by induction the result holds for all $m \in \mathbb{N}$ (the number of edges in nonseparable plane graph G), as claimed.

Theorem 10.16

Theorem 10.16. Let G be a connected plane graph, and let G^{*} be a plane dual of G. (a) If C is a cycle of G, then C^{*} is a bond of G^{*}. Proof. Let C be a cycle of G, and let X^{*} denote the set of vertices of G^{*} that lie in $\operatorname{int}(C)$ (so these vertices correspond to the faces of G in $\operatorname{int}(C))$. Then the edge cut $\partial\left(X^{*}\right)$ in G^{*} satisfies $\partial\left(X^{*}\right)=C^{*}$.

Theorem 10.16

Theorem 10.16. Let G be a connected plane graph, and let G^{*} be a plane dual of G. (a) If C is a cycle of G, then C^{*} is a bond of G^{*}.
Proof. Let C be a cycle of G, and let X^{*} denote the set of vertices of G^{*} that lie in $\operatorname{int}(C)$ (so these vertices correspond to the faces of G in $\operatorname{int}(C))$. Then the edge cut $\partial\left(X^{*}\right)$ in G^{*} satisfies $\partial\left(X^{*}\right)=C^{*}$.

Theorem 10.16

Theorem 10.16. Let G be a connected plane graph, and let G^{*} be a plane dual of G. (a) If C is a cycle of G, then C^{*} is a bond of G^{*}.
Proof. Let C be a cycle of G, and let X^{*} denote the set of vertices of G^{*} that lie in $\operatorname{int}(C)$ (so these vertices correspond to the faces of G in $\operatorname{int}(C))$. Then the edge cut $\partial\left(X^{*}\right)$ in G^{*} satisfies $\partial\left(X^{*}\right)=C^{*}$.

By Proposition 10.15 , the subgraph of G^{*} induced by $X^{*}, G^{*}\left[X^{*}\right]$, is connected. By Note 10.2.D, the subgraph of G^{*} induced by $V\left(G^{*}\right) \backslash X^{*}$ (the vertices in $\operatorname{ext}(C)$) is also connected. Therefore, by Theorem 2.15, C^{*} is a bond of G^{*}

Theorem 10.16

Theorem 10.16. Let G be a connected plane graph, and let G^{*} be a plane dual of G. (a) If C is a cycle of G, then C^{*} is a bond of G^{*}.
Proof. Let C be a cycle of G, and let X^{*} denote the set of vertices of G^{*} that lie in $\operatorname{int}(C)$ (so these vertices correspond to the faces of G in $\operatorname{int}(C))$. Then the edge cut $\partial\left(X^{*}\right)$ in G^{*} satisfies $\partial\left(X^{*}\right)=C^{*}$.

By Proposition 10.15, the subgraph of G^{*} induced by $X^{*}, G^{*}\left[X^{*}\right]$, is connected. By Note 10.2.D, the subgraph of G^{*} induced by $V\left(G^{*}\right) \backslash X^{*}$ (the vertices in $\operatorname{ext}(C)$) is also connected. Therefore, by Theorem 2.15, C^{*} is a bond of G^{*}.

