Graph Theory

Chapter 10. Planar Graphs

10.3. Euler's Formula—Proofs of Theorems

Graph Theory April 22, 2021 1 / 10

Theorem 10.19. Euler's Formul

Theorem 10.19 (continued)

Theorem 10.19. EULER'S FORMULA.

For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof (continued). Choose an edge e of G that is not a cut edge of G (if all edges are cut edges then, as explained above, G is a tree and f=1; since $f\geq 2$ then such an edge exists). Then $G\setminus e$ is a connected plane graph with f-1 faces (since the two faces incident to e in G are coalesced in $G\setminus e$). By the induction hypothesis, $v(G\setminus e)-e(G\setminus e)+f(G\setminus e)=2$. Since $v(G\setminus e)=v(G)$, $e(G\setminus e)=e(G)-1$, and $f(G\setminus e)=f(G)-1$, then v(G)-(e(G)-1)+(f(G)-1)=2 or v(G)-e(G)+f(G)=2. So, by induction, Euler's Formula holds for all connected plane graphs. \Box

Theorem 10.19. Euler's Formula

Theorem 10.19

Theorem 10.19. EULER'S FORMULA.

For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof. If f(G)=1 then each edge of G is a cut edge by Note 10.2.A. Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies e(G)=v(G)-1. Hence, v(G)-e(G)=1 and, since f(G)=1, v(G)-e(G)+f(G)=2. So this claim holds for all graphs with one face. We now give a proof based on mathematical induction and the number of faces f of a graph. We have established the base case of f=1. Now suppose Euler's Formula holds for all connected plane graphs with fewer than f faces where $f\geq 2$. Let G be a connected plane graph with f faces where $f\geq 2$.

() Graph Theory April 22, 2021 3 / 10

Corollary 10.2

Corollary 10.20

Corollary 10.20. All planar embeddings of a connected planar graph have the same number of faces.

Proof. Let \tilde{G} be a planar embedding of a planar graph G. By Euler's Formula (Theorem 10.19) we have $f(\tilde{G}) = e(\tilde{G}) - v(\tilde{G}) + 2$, and since $e(\tilde{G}) = e(G)$ and $v(\tilde{G}) = v(G)$ then $f(\tilde{G}) = e(G) - v(G) + 2 = f(G)$. So for any planar embedding \tilde{G} of G, we have $f(\tilde{G}) = f(G)$, as claimed. \square

Graph Theory April 22, 2021 4 / 10 () Graph Theory April 22, 2021 5 / 10

Corollary 10.21

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce m_1, m_2, \ldots, m_k and n_1, n_2, \ldots, n_k for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \geq 3$. Let \tilde{G} be any planar embedding of G. Since G is simple and connected with at least 3 vertices, then \tilde{G} has no faces of degree 2; that is, $d(f) \geq 3$ for all $f \in F(\tilde{G})$. Therefore

$$2m = \sum_{f \in F(\tilde{G})} d(f)$$
 by Theorem 10.10
 $\geq 3f(\tilde{G})$ since $f(\tilde{G})$ is the number of faces in \tilde{G}
 $= 3(m-n+2)$ by Euler's Formula (Theorem 10.19).

Graph Theory

April 22, 2021

Corollary 10.22

Corollary 10.22. Every simple planar graph has a vertex of degree at most five.

Proof. Since a simple planar graph on n < 3 has at most 2 edges, the result holds for n < 3. If $n \ge 3$ then

$$\delta n \le \sum_{v \in V} d(v)$$

$$= 2m \text{ by Theorem } 1.1$$

$$< 6n - 12 \text{ by Corollary } 10.21.$$

So $\delta \leq 6 - 12/n < 6$ and so $\delta \leq 5$ (since $\delta \in \mathbb{N}$), as claimed.

Corollary 10.21 (continued)

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof (continued). So $m \le 3n - 6$, as claimed.

Now equality holds if and only if $\sum_{f\in F(\tilde{G})}d(f)=3f(\tilde{G})$; that is, if and only if d(f)=3 for each $f\in F(\tilde{G})$ (since $d(f)\geq 3$, as shown above). That is, equality holds if and only if \tilde{G} is (by definition) a triangulation, as claimed.

() Graph Theory April 22, 2021 7 / 10

Corollary 10.2

Corollary 10.23

Corollary 10.23. K_5 are nonplanar.

Proof. ASSUME K_5 is planar. Since K_5 is simple and connected, then Corollary 10.21 implies $10 = e(K_5) \le 3v(K_5) - 6 = 9$, a CONTRADICTION. So K_5 is nonplanar.

Graph Theory April 22, 2021 8 / 10 () Graph Theory April 22, 2021 9 /

Corollary 10.24

Corollary 10.24. $K_{3,3}$ is nonplanar.

Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four. Then

$$4f(\tilde{G}) \le \sum_{f \in F(\tilde{G})} d(f)$$

$$= 2e(\tilde{G}) \text{ by Theorem 10.10}$$

$$= 18.$$

But this implies $f(\tilde{G}) \leq 9/2$, or $f(\tilde{G}) \leq 4$ since $f(\tilde{G}) \in \mathbb{N}$. Then be Euler's Formula (Theorem 10.19), $2 = \nu(\tilde{G}) - e(\tilde{G}) + f(\tilde{G}) \leq 6 - 9 + 4 = 1$, a CONTRADICTION. So $K_{3,3}$ is nonplanar.

() Graph Theory April 22, 2021 10 /