Graph Theory

Chapter 10. Planar Graphs

10.3. Euler's Formula—Proofs of Theorems

Table of contents

(1) Theorem 10.19. Euler's Formula
(2) Corollary 10.20
(3) Corollary 10.21
(4) Corollary 10.22
(5) Corollary 10.23
(6) Corollary 10.24

Theorem 10.19

Theorem 10.19. Euler's Formula. For a connected plane graph $G, v(G)-e(G)+f(G)=2$.

Proof. If $f(G)=1$ then each edge of G is a cut edge by Note 10.2.A. Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies $e(G)=v(G)-1$. Hence, $v(G)-e(G)=1$ and, since $f(G)=1, v(G)-e(G)+f(G)=2$. So this claim holds for all graphs with one face.

Theorem 10.19

Theorem 10.19. Euler's Formula.
For a connected plane graph $G, v(G)-e(G)+f(G)=2$.

Proof. If $f(G)=1$ then each edge of G is a cut edge by Note 10.2.A. Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies $e(G)=v(G)-1$. Hence, $v(G)-e(G)=1$ and, since $f(G)=1, v(G)-e(G)+f(G)=2$. So this claim holds for all graphs with one face. We now give a proof based on mathematical induction and the number of faces f of a graph. We have established the base case of $f=1$.

Theorem 10.19

Theorem 10.19. Euler's Formula.
For a connected plane graph $G, v(G)-e(G)+f(G)=2$.

Proof. If $f(G)=1$ then each edge of G is a cut edge by Note 10.2.A.
Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies $e(G)=v(G)-1$. Hence, $v(G)-e(G)=1$ and, since $f(G)=1, v(G)-e(G)+f(G)=2$. So this claim holds for all graphs with one face. We now give a proof based on mathematical induction and the number of faces f of a graph. We have established the base case of $f=1$. Now suppose Euler's Formula holds for all connected plane graphs with fewer than f faces where $f \geq 2$. Let G be a connected plane graph with f faces where $f \geq 2$.

Theorem 10.19

Theorem 10.19. Euler's Formula.
For a connected plane graph $G, v(G)-e(G)+f(G)=2$.

Proof. If $f(G)=1$ then each edge of G is a cut edge by Note 10.2.A.
Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies $e(G)=v(G)-1$. Hence, $v(G)-e(G)=1$ and, since $f(G)=1, v(G)-e(G)+f(G)=2$. So this claim holds for all graphs with one face. We now give a proof based on mathematical induction and the number of faces f of a graph. We have established the base case of $f=1$. Now suppose Euler's Formula holds for all connected plane graphs with fewer than f faces where $f \geq 2$. Let G be a connected plane graph with f faces where $f \geq 2$.

Theorem 10.19 (continued)

Theorem 10.19. Euler's Formula.
For a connected plane graph $G, v(G)-e(G)+f(G)=2$.

Proof (continued). Choose an edge e of G that is not a cut edge of G (if all edges are cut edges then, as explained above, G is a tree and $f=1$; since $f \geq 2$ then such an edge exists). Then $G \backslash e$ is a connected plane graph with $f-1$ faces (since the two faces incident to e in G are coalesced in $G \backslash e$).

Theorem 10.19 (continued)

Theorem 10.19. Euler's Formula.
For a connected plane graph $G, v(G)-e(G)+f(G)=2$.

Proof (continued). Choose an edge e of G that is not a cut edge of G (if all edges are cut edges then, as explained above, G is a tree and $f=1$; since $f \geq 2$ then such an edge exists). Then $G \backslash e$ is a connected plane graph with $f-1$ faces (since the two faces incident to e in G are coalesced in $G \backslash e)$. By the induction hypothesis, $v(G \backslash e)-e(G \backslash e)+f(G \backslash e)=2$. Since $v(G \backslash e)=v(G), e(G \backslash e)=e(G)-1$, and $f(G \backslash e)=f(G)-1$, then $v(G)-(e(G)-1)+(f(G)-1)=2$ or $v(G)-e(G)+f(G)=2$. So, by induction, Euler's Formula holds for all connected plane graphs.

Theorem 10.19 (continued)

Theorem 10.19. Euler's Formula.
For a connected plane graph $G, v(G)-e(G)+f(G)=2$.

Proof (continued). Choose an edge e of G that is not a cut edge of G (if all edges are cut edges then, as explained above, G is a tree and $f=1$; since $f \geq 2$ then such an edge exists). Then $G \backslash e$ is a connected plane graph with $f-1$ faces (since the two faces incident to e in G are coalesced in $G \backslash e)$. By the induction hypothesis, $v(G \backslash e)-e(G \backslash e)+f(G \backslash e)=2$. Since $v(G \backslash e)=v(G), e(G \backslash e)=e(G)-1$, and $f(G \backslash e)=f(G)-1$, then $v(G)-(e(G)-1)+(f(G)-1)=2$ or $v(G)-e(G)+f(G)=2$. So, by induction, Euler's Formula holds for all connected plane graphs.

Corollary 10.20

Corollary 10.20. All planar embeddings of a connected planar graph have the same number of faces.

Proof. Let \tilde{G} be a planar embedding of a planar graph G. By Euler's Formula (Theorem 10.19) we have $f(\tilde{G})=e(\tilde{G})-v(\tilde{G})+2$, and since $e(\tilde{G})=e(G)$ and $v(\mathcal{G})=v(G)$ then $f(G)=e(G)-v(G)+2=f(G)$. So for any planar embedding \tilde{G} of G, we have $f(\tilde{G})=f(G)$, as claimed.

Corollary 10.20

Corollary 10.20. All planar embeddings of a connected planar graph have the same number of faces.

Proof. Let \tilde{G} be a planar embedding of a planar graph G. By Euler's Formula (Theorem 10.19) we have $f(\tilde{G})_{\tilde{G}}=e(\tilde{G})-v(\tilde{G})+2$, and since $e(\tilde{G})=e(G)$ and $v(\tilde{G})=v(G)$ then $f(\tilde{G})=e(G)-v(G)+2=f(G)$. So for any planar embedding \tilde{G} of G, we have $f(\tilde{G})=f(G)$, as claimed.

Corollary 10.21

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \leq 3 n-6$. Furthermore, $m=3 n-6$ if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce $m_{1}, m_{2}, \ldots, m_{k}$ and $n_{1}, n_{2}, \ldots, n_{k}$ for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \geq 3$.

Corollary 10.21

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \leq 3 n-6$. Furthermore, $m=3 n-6$ if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce $m_{1}, m_{2}, \ldots, m_{k}$ and $n_{1}, n_{2}, \ldots, n_{k}$ for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \geq 3$. Let \tilde{G} be any planar embedding of G. Since G is simple and connected with at least 3 vertices, then \tilde{G} has no faces of degree 2 ; that is, $d(f) \geq 3$ for all $f \in F(\tilde{G})$.

Corollary 10.21

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \leq 3 n-6$. Furthermore, $m=3 n-6$ if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce $m_{1}, m_{2}, \ldots, m_{k}$ and $n_{1}, n_{2}, \ldots, n_{k}$ for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \geq 3$. Let \tilde{G} be any planar embedding of G. Since G is simple and connected with at least 3 vertices, then \tilde{G} has no faces of degree 2 ; that is, $d(f) \geq 3$ for all $f \in F(\tilde{G})$. Therefore

Corollary 10.21

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \leq 3 n-6$. Furthermore, $m=3 n-6$ if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce $m_{1}, m_{2}, \ldots, m_{k}$ and $n_{1}, n_{2}, \ldots, n_{k}$ for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \geq 3$. Let \tilde{G} be any planar embedding of G. Since G is simple and connected with at least 3 vertices, then \tilde{G} has no faces of degree 2 ; that is, $d(f) \geq 3$ for all $f \in F(\tilde{G})$. Therefore

$$
2 m=\sum_{f \in F(\tilde{G})} d(f) \text { by Theorem } 10.10
$$

$\geq 3 f(\tilde{G})$ since $f(\tilde{G})$ is the number of faces in \tilde{G}
$=3(m-n+2)$ by Euler's Formula (Theorem 10.19).

Corollary 10.21 (continued)

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \leq 3 n-6$. Furthermore, $m=3 n-6$ if and only if every planar embedding of G is a triangulation.

Proof (continued). So $m \leq 3 n-6$, as claimed.

Corollary 10.21 (continued)

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \leq 3 n-6$. Furthermore, $m=3 n-6$ if and only if every planar embedding of G is a triangulation.

Proof (continued). So $m \leq 3 n-6$, as claimed. Now equality holds if and only if $\sum_{f \in F(\tilde{G})} d(f)=3 f(\tilde{G})$; that is, if and
only if $d(f)=3$ for each $f \in F(\tilde{G})($ since $d(f) \geq 3$, as shown above).
That is, equality holds if and only if \tilde{G} is (by definition) a triangulation, as
claimed.

Corollary 10.21 (continued)

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \leq 3 n-6$. Furthermore, $m=3 n-6$ if and only if every planar embedding of G is a triangulation.

Proof (continued). So $m \leq 3 n-6$, as claimed.
Now equality holds if and only if $\sum_{f \in F(\tilde{G})} d(f)=3 f(\tilde{G})$; that is, if and only if $d(f)=3$ for each $f \in F(\tilde{G})$ (since $d(f) \geq 3$, as shown above). That is, equality holds if and only if \tilde{G} is (by definition) a triangulation, as claimed.

Corollary 10.22

Corollary 10.22. Every simple planar graph has a vertex of degree at most five.

Proof. Since a simple planar graph on $n<3$ has at most 2 edges, the

 result holds for $n<3$. If $n \geq 3$ then

So $\delta \leq 6-12 / n<6$ and so $\delta \leq 5$ (since $\delta \in \mathbb{N}$), as claimed.

Corollary 10.22

Corollary 10.22. Every simple planar graph has a vertex of degree at most five.

Proof. Since a simple planar graph on $n<3$ has at most 2 edges, the result holds for $n<3$. If $n \geq 3$ then

$$
\begin{aligned}
\delta n & \leq \sum_{v \in V} d(v) \\
& =2 m \text { by Theorem } 1.1 \\
& \leq 6 n-12 \text { by Corollary 10.21. }
\end{aligned}
$$

So $\delta \leq 6-12 / n<6$ and so $\delta \leq 5$ (since $\delta \in \mathbb{N}$), as claimed.

Corollary 10.23

Corollary 10.23. K_{5} are nonplanar.

Proof. ASSUME K_{5} is planar. Since K_{5} is simple and connected, then Corollary 10.21 implies $10=e\left(K_{5}\right) \leq 3 v\left(K_{5}\right)-6=9$, a CONTRADICTION. So K_{5} is nonplanar.

Corollary 10.23

Corollary 10.23. K_{5} are nonplanar.

Proof. ASSUME K_{5} is planar. Since K_{5} is simple and connected, then Corollary 10.21 implies $10=e\left(K_{5}\right) \leq 3 v\left(K_{5}\right)-6=9$, a CONTRADICTION. So K_{5} is nonplanar.

Corollary 10.24

Corollary 10.24. $K_{3,3}$ is nonplanar.
Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four.

Corollary 10.24

Corollary 10.24. $K_{3,3}$ is nonplanar.
Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four. Then

But this implies $f(\tilde{G}) \leq 9 / 2$, or $f(\tilde{G}) \leq 4$ since $f(\tilde{G}) \in \mathbb{N}$.

Corollary 10.24

Corollary 10.24. $K_{3,3}$ is nonplanar.
Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four. Then

$$
\begin{aligned}
4 f(\tilde{G}) & \leq \sum_{f \in F(\tilde{G})} d(f) \\
& =2 e(\tilde{G}) \text { by Theorem } 10.10 \\
& =18 .
\end{aligned}
$$

But this implies $f(\tilde{G}) \leq 9 / 2$, or $f(\tilde{G}) \leq 4$ since $f(\tilde{G}) \in \mathbb{N}$. Then be Euler's Formula (Theorem 10.19), $2=v(G)-e(G)+f(G) \leq 6-9+4=1$, a CONTRADICTION. So $K_{3,3}$ is nonplanar.

Corollary 10.24

Corollary 10.24. $K_{3,3}$ is nonplanar.
Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four. Then

$$
\begin{aligned}
4 f(\tilde{G}) & \leq \sum_{f \in F(\tilde{G})} d(f) \\
& =2 e(\tilde{G}) \text { by Theorem } 10.10 \\
& =18 .
\end{aligned}
$$

But this implies $f(\tilde{G}) \leq 9 / 2$, or $f(\tilde{G}) \leq 4$ since $f(\underset{\tilde{G}}{\tilde{G}}) \in \mathbb{N}$. Then be Euler's Formula (Theorem 10.19), $2=v(\tilde{G})-e(\tilde{G})+f(\tilde{G}) \leq 6-9+4=1$, a CONTRADICTION. So $K_{3,3}$ is nonplanar.

