Graph Theory

Chapter 10. Planar Graphs 10.3. Euler's Formula—Proofs of Theorems

Table of contents

- Theorem 10.19. Euler's Formula
- 2 Corollary 10.20
- 3 Corollary 10.21
- 4 Corollary 10.22
- 5 Corollary 10.23
- 6 Corollary 10.24

Theorem 10.19. EULER'S FORMULA. For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof. If f(G) = 1 then each edge of G is a cut edge by Note 10.2.A. Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies e(G) = v(G) - 1. Hence, v(G) - e(G) = 1 and, since f(G) = 1, v(G) - e(G) + f(G) = 2. So this claim holds for all graphs with one face.

Theorem 10.19. EULER'S FORMULA. For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof. If f(G) = 1 then each edge of G is a cut edge by Note 10.2.A. Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies e(G) = v(G) - 1. Hence, v(G) - e(G) = 1 and, since f(G) = 1, v(G) - e(G) + f(G) = 2. So this claim holds for all graphs with one face. We now give a proof based on mathematical induction and the number of faces f of a graph. We have established the base case of f = 1.

()

Theorem 10.19. EULER'S FORMULA. For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof. If f(G) = 1 then each edge of G is a cut edge by Note 10.2.A. Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies e(G) = v(G) - 1. Hence, v(G) - e(G) = 1 and, since f(G) = 1, v(G) - e(G) + f(G) = 2. So this claim holds for all graphs with one face. We now give a proof based on mathematical induction and the number of faces f of a graph. We have established the base case of f = 1. Now suppose Euler's Formula holds for all connected plane graphs with fewer than f faces where $f \ge 2$. Let G be a connected plane graph with f faces where $f \ge 2$.

Theorem 10.19. EULER'S FORMULA. For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof. If f(G) = 1 then each edge of G is a cut edge by Note 10.2.A. Therefore G can contain no cycles; that is, G is a connected acyclic graph, so G is a tree in this case. By Theorem 4.3, this implies e(G) = v(G) - 1. Hence, v(G) - e(G) = 1 and, since f(G) = 1, v(G) - e(G) + f(G) = 2. So this claim holds for all graphs with one face. We now give a proof based on mathematical induction and the number of faces f of a graph. We have established the base case of f = 1. Now suppose Euler's Formula holds for all connected plane graphs with fewer than f faces where $f \ge 2$. Let G be a connected plane graph with f faces where $f \ge 2$.

Theorem 10.19 (continued)

Theorem 10.19. EULER'S FORMULA. For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof (continued). Choose an edge e of G that is not a cut edge of G (if all edges are cut edges then, as explained above, G is a tree and f = 1; since $f \ge 2$ then such an edge exists). Then $G \setminus e$ is a connected plane graph with f - 1 faces (since the two faces incident to e in G are coalesced in $G \setminus e$).

Theorem 10.19 (continued)

Theorem 10.19. EULER'S FORMULA. For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof (continued). Choose an edge *e* of *G* that is not a cut edge of *G* (if all edges are cut edges then, as explained above, *G* is a tree and f = 1; since $f \ge 2$ then such an edge exists). Then $G \setminus e$ is a connected plane graph with f - 1 faces (since the two faces incident to *e* in *G* are coalesced in $G \setminus e$). By the induction hypothesis, $v(G \setminus e) - e(G \setminus e) + f(G \setminus e) = 2$. Since $v(G \setminus e) = v(G)$, $e(G \setminus e) = e(G) - 1$, and $f(G \setminus e) = f(G) - 1$, then v(G) - (e(G) - 1) + (f(G) - 1) = 2 or v(G) - e(G) + f(G) = 2. So, by induction, Euler's Formula holds for all connected plane graphs.

Theorem 10.19 (continued)

Theorem 10.19. EULER'S FORMULA. For a connected plane graph G, v(G) - e(G) + f(G) = 2.

Proof (continued). Choose an edge *e* of *G* that is not a cut edge of *G* (if all edges are cut edges then, as explained above, *G* is a tree and f = 1; since $f \ge 2$ then such an edge exists). Then $G \setminus e$ is a connected plane graph with f - 1 faces (since the two faces incident to *e* in *G* are coalesced in $G \setminus e$). By the induction hypothesis, $v(G \setminus e) - e(G \setminus e) + f(G \setminus e) = 2$. Since $v(G \setminus e) = v(G)$, $e(G \setminus e) = e(G) - 1$, and $f(G \setminus e) = f(G) - 1$, then v(G) - (e(G) - 1) + (f(G) - 1) = 2 or v(G) - e(G) + f(G) = 2. So, by induction, Euler's Formula holds for all connected plane graphs.

Corollary 10.20. All planar embeddings of a connected planar graph have the same number of faces.

Proof. Let \tilde{G} be a planar embedding of a planar graph G. By Euler's Formula (Theorem 10.19) we have $f(\tilde{G}) = e(\tilde{G}) - v(\tilde{G}) + 2$, and since $e(\tilde{G}) = e(G)$ and $v(\tilde{G}) = v(G)$ then $f(\tilde{G}) = e(G) - v(G) + 2 = f(G)$. So for any planar embedding \tilde{G} of G, we have $f(\tilde{G}) = f(G)$, as claimed.

Corollary 10.20. All planar embeddings of a connected planar graph have the same number of faces.

Proof. Let \tilde{G} be a planar embedding of a planar graph G. By Euler's Formula (Theorem 10.19) we have $f(\tilde{G}) = e(\tilde{G}) - v(\tilde{G}) + 2$, and since $e(\tilde{G}) = e(G)$ and $v(\tilde{G}) = v(G)$ then $f(\tilde{G}) = e(G) - v(G) + 2 = f(G)$. So for any planar embedding \tilde{G} of G, we have $f(\tilde{G}) = f(G)$, as claimed.

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce m_1, m_2, \ldots, m_k and n_1, n_2, \ldots, n_k for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \ge 3$.

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce m_1, m_2, \ldots, m_k and n_1, n_2, \ldots, n_k for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \ge 3$. Let \tilde{G} be any planar embedding of G. Since G is simple and connected with at least 3 vertices, then \tilde{G} has no faces of degree 2; that is, $d(f) \ge 3$ for all $f \in F(\tilde{G})$.

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce m_1, m_2, \ldots, m_k and n_1, n_2, \ldots, n_k for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \ge 3$. Let \tilde{G} be any planar embedding of G. Since G is simple and connected with at least 3 vertices, then \tilde{G} has no faces of degree 2; that is, $d(f) \ge 3$ for all $f \in F(\tilde{G})$. Therefore

$$2m = \sum_{f \in F(\tilde{G})} d(f)$$
 by Theorem 10.10

- $\geq 3f(\tilde{G})$ since $f(\tilde{G})$ is the number of faces in \tilde{G}
- = 3(m n + 2) by Euler's Formula (Theorem 10.19).

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof. It suffices to prove the result for connected graphs (since for a graph with k components, we can introduce m_1, m_2, \ldots, m_k and n_1, n_2, \ldots, n_k for the numbers of edges and vertices in the components, and then apply the result to each component). Let G be a simple connected planar graph with $n \ge 3$. Let \tilde{G} be any planar embedding of G. Since G is simple and connected with at least 3 vertices, then \tilde{G} has no faces of degree 2; that is, $d(f) \ge 3$ for all $f \in F(\tilde{G})$. Therefore

$$2m = \sum_{f \in F(\tilde{G})} d(f) \text{ by Theorem 10.10}$$

$$\geq 3f(\tilde{G}) \text{ since } f(\tilde{G}) \text{ is the number of faces in } \tilde{G}$$

$$= 3(m - n + 2) \text{ by Euler's Formula (Theorem 10.19).}$$

Corollary 10.21 (continued)

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof (continued). So $m \leq 3n - 6$, as claimed.

Corollary 10.21 (continued)

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof (continued). So $m \leq 3n - 6$, as claimed.

Now equality holds if and only if $\sum_{f \in F(\tilde{G})} d(f) = 3f(\tilde{G})$; that is, if and only if d(f) = 3 for each $f \in F(\tilde{G})$ (since $d(f) \ge 3$, as shown above). That is, equality holds if and only if \tilde{G} is (by definition) a triangulation, as claimed.

Corollary 10.21 (continued)

Corollary 10.21. Let G be a simple planar graph on at least three vertices. Then $m \le 3n - 6$. Furthermore, m = 3n - 6 if and only if every planar embedding of G is a triangulation.

Proof (continued). So $m \leq 3n - 6$, as claimed.

Now equality holds if and only if $\sum_{f \in F(\tilde{G})} d(f) = 3f(\tilde{G})$; that is, if and only if d(f) = 3 for each $f \in F(\tilde{G})$ (since $d(f) \ge 3$, as shown above). That is, equality holds if and only if \tilde{G} is (by definition) a triangulation, as claimed.

Corollary 10.22. Every simple planar graph has a vertex of degree at most five.

Proof. Since a simple planar graph on n < 3 has at most 2 edges, the result holds for n < 3. If $n \ge 3$ then

$$\begin{split} \delta n &\leq \sum_{v \in V} d(v) \\ &= 2m \text{ by Theorem 1.1} \\ &\leq 6n - 12 \text{ by Corollary 10.21.} \end{split}$$

So $\delta \leq 6 - 12/n < 6$ and so $\delta \leq 5$ (since $\delta \in \mathbb{N}$), as claimed.

Corollary 10.22. Every simple planar graph has a vertex of degree at most five.

Proof. Since a simple planar graph on n < 3 has at most 2 edges, the result holds for n < 3. If $n \ge 3$ then

$$\delta n \leq \sum_{v \in V} d(v)$$

= 2m by Theorem 1.1
 $\leq 6n - 12$ by Corollary 10.21.

So $\delta \leq 6 - 12/n < 6$ and so $\delta \leq 5$ (since $\delta \in \mathbb{N}$), as claimed.

Corollary 10.23. K₅ are nonplanar.

Proof. ASSUME K_5 is planar. Since K_5 is simple and connected, then Corollary 10.21 implies $10 = e(K_5) \le 3v(K_5) - 6 = 9$, a CONTRADICTION. So K_5 is nonplanar. **Corollary 10.23.** *K*₅ are nonplanar.

Proof. ASSUME K_5 is planar. Since K_5 is simple and connected, then Corollary 10.21 implies $10 = e(K_5) \le 3v(K_5) - 6 = 9$, a CONTRADICTION. So K_5 is nonplanar.

Corollary 10.24. K_{3,3} is nonplanar.

Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four.

Corollary 10.24. K_{3,3} is nonplanar.

Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four. Then

$$4f(ilde{G}) \leq \sum_{f \in F(ilde{G})} d(f)$$

= $2e(ilde{G})$ by Theorem 10.10
= 18.

But this implies $f(\tilde{G}) \leq 9/2$, or $f(\tilde{G}) \leq 4$ since $f(\tilde{G}) \in \mathbb{N}$.

Corollary 10.24. K_{3,3} is nonplanar.

Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four. Then

$$\begin{aligned} 4f(\tilde{G}) &\leq \sum_{f \in F(\tilde{G})} d(f) \\ &= 2e(\tilde{G}) \text{ by Theorem 10.10} \\ &= 18. \end{aligned}$$

But this implies $f(\tilde{G}) \leq 9/2$, or $f(\tilde{G}) \leq 4$ since $f(\tilde{G}) \in \mathbb{N}$. Then be Euler's Formula (Theorem 10.19), $2 = v(\tilde{G}) - e(\tilde{G}) + f(\tilde{G}) \leq 6 - 9 + 4 = 1$, a CONTRADICTION. So $K_{3,3}$ is nonplanar.

()

Corollary 10.24. K_{3,3} is nonplanar.

Proof. ASSUME that $K_{3,3}$ is planar and let \tilde{G} be a planar embedding of $K_{3,3}$. Since $K_{3,3}$ is simple then it has no cycles of length 2 and since $K_{3,3}$ is bipartite then it has no cycles of length 3 (by Theorem 4.7). That is $K_{3,3}$ has no cycle of length less than four, so that every face of G has degree at least four. Then

$$\begin{aligned} 4f(\tilde{G}) &\leq \sum_{f \in F(\tilde{G})} d(f) \\ &= 2e(\tilde{G}) \text{ by Theorem 10.10} \\ &= 18. \end{aligned}$$

But this implies $f(\tilde{G}) \leq 9/2$, or $f(\tilde{G}) \leq 4$ since $f(\tilde{G}) \in \mathbb{N}$. Then be Euler's Formula (Theorem 10.19), $2 = v(\tilde{G}) - e(\tilde{G}) + f(\tilde{G}) \leq 6 - 9 + 4 = 1$, a CONTRADICTION. So $K_{3,3}$ is nonplanar.