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Theorem 10.25

Theorem 10.25

Theorem 10.25. Overlapping bridges of a cycle in a connected graph are
either skew or else equivalent 3-bridges.

Proof. Suppose that bridges B and B ′ of the cycle overlap. Then, by
definition, both B and B ′ must have at least two vertices of attachment.
If either B or B ′ is a 2-bridge then, since the bridges do not avoid each
other (so that all vertices of attachment of one does not lie in a single
segment of the other, so the two segments of C determined by a 2-bridge
must each contain some vertex of attachment of the other bridge) then
they are skew.

So we can assume without loss of generality that both B
and B ′ have at least three vertices of attachment.
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Theorem 10.25

Theorem 10.25 (continued)

Proof (continued). If B and B ′ are not equivalent (that is, they do not
have exactly the same vertices of attachment), then B ′ has a vertex u′ of
attachment strictly between two consecutive vertices of attachment u and
v of B. Because B and B ′ do not avoid each other (that is, they overlap)
then some vertex of attachment v ′ of B ′ does not lie in the segment of B
connecting u and v (and so v ′ 6= u and v ′ 6= v). Therefore B and B ′ are
skew. That is, if B and B ′ are not equivalent then they are skew.

If B and B ′ are equivalent k-bridges (that is, they have the same k
vertices of attachment) then k ≥ 3 (if k = 2, then the segments
determined by B and B ′ are the same and then B and B ′ avoid each
other, contradicting the hypothesis that B and B ′ overlap). If k ≥ 4, then
B and B ′ are skew (take 4 vertices of attachment in the order determined
by cycle C , associate the first and third ones with B and the second and
forth one with B ′). With k = 3, B and B ′ are then equivalent 3-bridges.
In each case are considered, overlapping B and B ′ are either skew or
equivalent 3-bridges, as claimed.
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Theorem 10.26

Theorem 10.26

Theorem 10.26. Let G be a plane graph containing cycle C . The inner
bridge of C avoid one another, and the outer bridges of C avoid one
another.

Proof. Let B and B ′ be inner bridges of cycle C . ASSUME B and B ′

overlap. By Theorem 10.25, B and B ′ are either skew or equivalent
3-bridges.

Case 1. Suppose B and B ′ are skew. Then there are, by definition of
“skew,” distinct vertices u, v in B and u′, v ′ in B ′ appearing in the cyclic
order u, u′, v , v ′ on C . Let uPv be a path in B and u′P ′v ′ a path in B ′,
both internally disjoint from C (the paths exist since bridges by definition
are either single edges or connected components F of G − V (C )).
Consider the subgraph H = C ∪ P ∪ P ′ of G (see Figure 10.17, left).
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Theorem 10.26

Theorem 10.26 (continued 1)

Proof (continued).

Because G is a plane graph then so is a subgraph H. Let K be the plane
graph obtained from H by adding a vertex in ext(C ) and joining it to
u, u′, v , v ′ (with no crossings; see Figure 10.17, right). Then K is a
subdivision of K5 (a “subdivision since P and P ′ may not be paths of
length 1 and the paths in C determined by u, u′, v , v ′ may not be of length
1). But K5 is nonplanar by Corollary 10.23 and this implies that H is a
nonplanar subgraph of G (this is spelled out in Kuratowski’s Theorem,
Theorem 10.30, in the next section), a CONTRADICTION to the fact that
G is a plane graph.
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Theorem 10.26

Theorem 10.26 (continued 2)

Proof (continued).
Case 2. Suppose B and B ′ are equivalent 3-bridges. Let the common set
of vertices of attachment be S = {v1, v2, v3}. By Exercise 9.2.3, there is a
(v ,S)-fan F in B for some internal vertex v of B. Similarly, there is a
(v ′,S)-fan F ′ in B ′ for some internal vertex v ′ of B ′. Consider the
subgraph H = F ∪ F ′ of G (see Figure 10.18, left).

Because G is a plane graph then so is subgraph H. Let K be the plane
graph obtained from H by adding a vertex in ext(C ) and joining it to the
three vertices of S (with no crossings; see Figure 10.18, right). Then K is
a subdivision of K3,3. But K3,3 is nonplanar by Corollary 10.24.
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Theorem 10.26

Theorem 10.26 (continued 3)

Theorem 10.26. Let G be a plane graph containing cycle C . The inner
bridge of C avoid one another, and the outer bridges of C avoid one
another.

Proof (continued). This implies that H is a nonplanar subgraph of G , a
CONTRADICTION to the fact that G is a plane graph.

Since we get a contradiction in both cases, then the assumption that B
and B ′ overlap is false and hence B and B ′ avoid one another. The proof
for outer bridges is similar.
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Theorem 10.27

Theorem 10.27

Theorem 10.27. A cycle in a simple 3-connected plane graph is a facial
cycle if and only if it is nonseparating.

Proof. Let G be a simple 3-connected plane graph and let C be a cycle of
G . Suppose that C is not a facial cycle of G . Then C has at least one
inner bridge (or else C would be the boundary of the face int(C )) and at
least one outer bridge (or else C would be the boundary of the face of
ext(C )). Since G is simple and connected, these bridges are not loops. So
either they are both nontrivial (in which case C is not a nonseparating
cycle) or at least one of them is a chord (in which case C is not a facial
cycle then it is not nonseparating (or equivalently, if C is nonseparating
cycle then C is a facial cycle).

Now suppose C is a facial cycle of G . By Proposition 10.5, we may
assume without loss of generality that C bounds the outer face of G . So
all bridges of C are inner bridges. By Theorem 10.26, these bridges avoid
one another.
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Theorem 10.27

Theorem 10.27 (continued 1)

Theorem 10.27. A cycle in a simple 3-connected plane graph is a facial
cycle if and only if it is nonseparating.

Proof (continued). ASSUME C has a chord xy (which would be a trivial
bridge; notice that x and y are not adjacent in C since G is simple). Then
there are two xy -segments of C and each has at least one internal vertex.
Since the bridges avoid one another, there can be no bridge joining an
internal vertex of one xy -segment to an internal vertex of the other
xy -segment. Therefore {x , y} is a vertex cut which separates the internal
vertices of the two xy -segments. But G is 3-connected and so cannot have
a vertex cut of size 2, a CONTRADICTION. So C has no chords.
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Theorem 10.27

Theorem 10.27 (continued 2)

Theorem 10.27. A cycle in a simple 3-connected plane graph is a facial
cycle if and only if it is nonseparating.

Proof (continued). ASSUME C has two nontrivial bridges. Again by
Theorem 10.26, these bridges avoid one another. So the vertices of
attachment of one of these bridges would all lie on a single xy -segment of
the other bridge (for some vertices x and y of C ). Since both bridges are
nontrivial, then each has internal vertices. Then {x , y} is a vertex cut
which separates the internal vertices of one bridge from the internal
vertices of the other bridge. But G is 3-connected and so cannot have a
vertex cut fo size 2, a CONTRADICTION. So C does not have two
nontrivial bridges, and hence has at most one nontrivial bridge. That is, if
C is a facial cycle then C is a nonseparating cycle.
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Theorem 10.28

Theorem 10.28

Theorem 10.28. Every simple 3-connected planar graph has a unique
planar embedding.

Proof. Let G be a simple 3-connected planar graph. By Theorem 10.27,
the facial cycles in any planar embedding of G are precisely its
nonseparating cycles. Now a separating cycle is a cycle with no chords and
at most one nontrivial bridge. The existence of a chord of a cycle and the
definition of nontrivial bridge are independent of any planar embedding of
G (they are part “of the abstract structure of the graph,” as Bondy and
Murty say).

So the nonseparating cycles, and hence the facial cycles, are
the same for every planar embedding of G . Hence the facial cycles are the
same for every planar embedding of G ; that is, the face boundaries are the
same for every planar embedding of G and all embeddings are equivalent,
as claimed.
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