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Lemma 10.33

Lemma 10.33

Lemma 10.33. Let G be a graph with a 2-vertex cut set S = {x , y}.
Then each marked {x , y}-component of G is isomorphic to a minor of G .

Proof. Let H be an S-component of G , with marker edge e, and let xPy
be a path in another S-component of G (which exists since the
S-components are connected). Then H ∪ P is a subgraph of G .

Also,
H ∪ P is isomorphic to a subdivision of G + e (just subdivide edge e = xy
until it is isomorphic to path P joining x and y). So G + e is isomorphic
to a minor of G .
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Lemma 10.34

Lemma 10.34

Lemma 10.34. Let G be a graph with a 2-vertex cut set S = {x , y}.
Then G is planar if and only if each of its marked S-components is planar.

Proof. Suppose G is planar. By Lemma 10.33, each marked S-component
of G is isomorphic to a minor of G . Then by Proposition 10.31, the minor
is planar and so the marked S-component is planar.

Now suppose that G has marked S-components each of which are planar.
Let e = xy denote their common marker edge. Exercise 10.4.1 states that
if G1 and G2 are planar with intersection isomorphic to K2, then G1 ∪G2 is
planar. So by this (and induction) the union of the marked S-components
of G is planar. This union is G + e, so G + e is planar. Therefore, by Note
10.2.C, G is planar.
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Theorem 10.35

Theorem 10.35

Theorem 10.35. Every 3-connected nonplanar graph has a Kuratowski
minor.

Proof. Let G be a 3-connected nonplanar graph. Since we are making a
claim about a minor graph, then we may assume that G is simple (for G
can be made simple by edge deletion and if the result holds for simple
graphs then it holds for nonsimple graphs). All graphs on four or fewer
vertices are planar, so without loss of generality we can assume n ≥ 5. We
give an inductive proof on n, with the result holding trivially for n ≤ 4 (the
base case). Suppose the result holds for all 3-connected nonplanar graphs
on n vertices or less and let G be a 3-connected nonplanar graph with
n + 1 vertices.

By Theorem 9.10, G contains an edge e = xy such that
H = G/e is 3-connected. By the induction hypothesis, if H is nonplanar
then it has a Kuratowksi minor. Since every minor of G/e is also a minor
of G , we deduce that G too has a Kuratowski minor and we are done. So
we can assume, without loss of generality, that H is planar.
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Theorem 10.35

Theorem 10.35 (continued 1)

Theorem 10.35. Every 3-connected nonplanar graph has a Kuratowski
minor.

Proof (continued). Let H̃ be a plane embedding of H. Denote by z the
vertex of H formed by contracting edge e described above. Because H is
simple then it is loopless and 3-connected, so by Corollary 10.8 the
neighbors of z lie on a cycle C . Then C is the boundary of a face f of
H̃ − z where f as a subset of R2 containing vertex z in the plane
embedding H̃ of H (as shown in the proof of Corollary 10.8 — see the last
line of the proof). Now consider the edge deleted graph G \ e which also
contains cycle C . Now x and y are vertices in G \ e which are not in cycle
C , so there are bridges of C in G \ e, Bx and By , that contain x and y ,
respectively. Notice that all neighbors of x and all neighbors of y lie on
cycle C . Also, cycle C is the boundary of some face f of H̃ − z , so face f
cannot contain any other edges of H̃ − z other than those that join C to x
or join C to y .
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Theorem 10.35

Theorem 10.35 (continued 2)

Proof (continued). ASSUME first that Bx and By avoid each other (so
the vertices of attachment of one bridge lie in a single segment of the
cycle determined by the other bridge). Then (here comes a soft argument)
Bx and By can be embedded in face f of H̃ − z in such a way that vertices
x and y belong to the same face of the resulting graph (H̃ − z) ∪ B̃x ∪ B̃y

(see Figure 10.20).

Figure 10.20. A planar embedding of G \ e (left) and G (right) where Bx

and By avoid each other.
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Theorem 10.35

Theorem 10.35 (continued 3)

Proof (continued). Informally, we have B̃x and B̃y are stars with centers
x and y , respectively, and their edges have no crossings (though they may
share one or two vertices in their coronas). The edge xy can now be added
to (H̃ − z) ∪ B̃x ∪ B̃y without any crossings to give a planar embedding of
graph G , a CONTRADICTION to the hypothesis that G is nonplanar.
Hence, bridges Bx and By do not avoid each other (i.e., they overlap).

With bridges Bx and By overlapping, by Theorem 10.25 they are either
skew (in which case some of their vertices “alternate” on cycle C ) or they
are equivalent 3-bridges (in which case they have the same three vertices
of attachement to C ). In the first case, G has a K3,3 minor (which
includes edge xy) and in the second case G has a K5 minor (which
includes edge xy). See Figure 10.21.
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Theorem 10.35

Theorem 10.35 (continued 4)

Proof (continued).

Figure 10.21. G has a K3,3-minor when Bx and By are skew (left), and G
has a K5-minor when Bx and By are equivalent 3-bridges (right).

Therefore the result holds for graph G on n + 1 vertices, and by
mathematical induction the result holds for all 3-connected nonplanar
graphs, as claimed.
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Theorem 10.32. Wagner’s Theorem

Theorem 10.32

Theorem 10.32. Wagner’s Theorem. A graph is planar if and only if it
has no Kuratowski minor.

Proof. Let G be a graph (without loss of generality, G is connected and
so is 1-connected).

First, suppose G is planar. By Proposition 10.31, a planar graph cannot
have a nonplanar minor so G does not have a Kuratowski minor.

Second, suppose G is nonplanar. If G is k-connected for k ≥ 3, then G is
also 3-connected and so G has a Kuratowksi minor by Theorem 10.35. If
G is not 3-connected then G has a 2-vertex cut {x , y} (notice that this
holds if G is either 1-connected or 2-connected. . . just as long as it is not
3-connected). Now the decomposition tree of G consists of leaves which
are either 3-connected graphs or graphs whose underlying simple graph is
K3 (see the definition of “decomposition tree” and Figure 9.8 in Section
9.4. Three Connected Graphs).
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Theorem 10.32. Wagner’s Theorem

Theorem 10.32 (continued)

Theorem 10.32. Wagner’s Theorem. A graph is planar if and only if it
has no Kuratowski minor.

Proof (continued). By Lemma 10.34, since G is nonplanar then it has a
marked {x , y}-component (see Section 9.4) that is not planar. By Lemma
10.33, each marked {x , y}-component of G is isomorphic to a minor of G ,
so G has a nonplanar minor. Since this minor cannot have K3 as its
underlying simple graph, then it must be a 3-connected nonplanar graph.
So by Theorem 10.35, this minor has a Kuratowski minor and so G itself
has a Kuratowski minor, as claimed.
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