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Chapter 11. The Four-Colour Problem
11.1. Colourings of Planar Maps—Proofs of Theorems
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Theorem 11.4

Theorem 11.4. TAIT’S THEOREM.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is
3-edge-colourable.
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Theorem 11.4

Theorem 11.4. TAIT’S THEOREM.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is
3-edge-colourable.

Proof. Let G be a 3-connected cubic plane graph.
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Theorem 11.4

Theorem 11.4. TAIT’S THEOREM.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is
3-edge-colourable.

Proof. Let G be a 3-connected cubic plane graph.

First suppose that G has a proper 4-face-colouring. Denote the colours by
the vectors ap = (0,0), a3 = (1,0), ax = (0,1), and a3 = (1,1) in

Zy X Zp. We'll give a 3-edge-colouring of G by assigning to each edge the
sum of the colours of the two faces it separates. Notice that since G has
no cut edges then each edge separates two distinct faces, so no edge is
assigned colour « under this scheme (since each vector is its own additive
inverse in Zyp X Zy).
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Theorem 11.4

Theorem 11.4. TAIT’S THEOREM.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is
3-edge-colourable.

Proof. Let G be a 3-connected cubic plane graph.

First suppose that G has a proper 4-face-colouring. Denote the colours by
the vectors ap = (0,0), a3 = (1,0), ax = (0,1), and a3 = (1,1) in

Zy X Zp. We'll give a 3-edge-colouring of G by assigning to each edge the
sum of the colours of the two faces it separates. Notice that since G has
no cut edges then each edge separates two distinct faces, so no edge is
assigned colour « under this scheme (since each vector is its own additive
inverse in Zy x Zo). If aj, j, and « are the colours assigned to the three
faces incident to vertex v, then a; + o, a + ay, and o + o are the
colours assigned to the three edges incident with v (see Figure 11.2).
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Theorem 11.4 (continued 1)

Proof (continued).

a; +

o a7 v Loy + oy
e L

~ #

hed

Qp

Figure 11.2. The 3-edge-colouring of a cubic plane graph induced by a
4-face-colouring.

Since the face colouring is proper then «;, a;, and oy are distinct and
hence the three edges incident to v have different colours. Following this
scheme to assign colours to all edges of G gives a proper 3-edge-colouring
in colours a1, o, a3, as needed.
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Theorem 11.4 (continued 2)

Theorem 11.4. TAIT’S THEOREM.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is
3-edge-colourable.

Proof (continued). Second, suppose that G has a proper
3-edge-colouring in colours 1, 2, 3. Denote by E; the set of edges of G of
colour i, for i € {1,2,3}. The induced subgraph G[Ej] is a spanning
1-regular subgraph of G (since G is cubic graph with a proper
3-edge-colouring).

Graph Theory T



Theorem 11.4 (continued 2)

Theorem 11.4. TAIT’S THEOREM.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is
3-edge-colourable.

Proof (continued). Second, suppose that G has a proper
3-edge-colouring in colours 1, 2, 3. Denote by E; the set of edges of G of
colour i, for i € {1,2,3}. The induced subgraph G[Ej] is a spanning
1-regular subgraph of G (since G is cubic graph with a proper
3-edge-colouring). Set Gjj = G[E; U Ej] for 1 < i < j < 3. Then each G;
is a spanning 2-regular subgraph of G (since the G[E;] are spanning with
G[Ej] and GJ[E;] edge disjoint). Then by Exercise 11.1.2/11.2.2, G;; is
2-face-colourable. Also, each face of G is the intersection of a face of Gi»
and a face of Gu3 (since Gi2 and Go3 together include all edges; see Figure
11.3 for an illustration of this for the cube Q).
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Theorem 11.4 (continued 3)

Proof (continued).

Figure 11.3. (a) A 3-edge-colouring of the cube, (b) 2-face-colourings
(shaded and unshaded) of the spanning subgraphs Gi» and Gi3, (c) the
induced 4-face colouring of the cube.

Consider the 2-face-colourings of Gio and Gps, say with the face colours 0
and 1 (with colour O represented by unshaded faces and colour 1
represented by shaded faces in Figure 11.3(b)).
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Theorem 11.4 (continued 4)

Proof (continued). Now assign to each face f of G the ordered pair of
colours assigned to faces Gi2 and Gz (respectively) whose intersection is
f. This gives a 4-face-colouring of G in the colours g, a1, a2, asz
mentioned above. Because G = Gio U Gp3, then this is a proper
4-face-colouring of G (see Figure 11.3(c)), as needed. O

Figure 11.3.
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