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Chapter 11. The Four-Colour Problem
11.1. Colourings of Planar Maps—Proofs of Theorems
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Theorem 11.4. Tait’s Theorem

Theorem 11.4

Theorem 11.4. Tait’s Theorem.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is
3-edge-colourable.

Proof. Let G be a 3-connected cubic plane graph.

First suppose that G has a proper 4-face-colouring. Denote the colours by
the vectors α0 = (0, 0), α1 = (1, 0), α2 = (0, 1), and α3 = (1, 1) in
Z2 × Z2. We’ll give a 3-edge-colouring of G by assigning to each edge the
sum of the colours of the two faces it separates. Notice that since G has
no cut edges then each edge separates two distinct faces, so no edge is
assigned colour α0 under this scheme (since each vector is its own additive
inverse in Z2 × Z2). If αi , αj , and αk are the colours assigned to the three
faces incident to vertex v , then αi + αj , αi + αk , and αj + αk are the
colours assigned to the three edges incident with v (see Figure 11.2).
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Theorem 11.4. Tait’s Theorem

Theorem 11.4 (continued 1)

Proof (continued).

Figure 11.2. The 3-edge-colouring of a cubic plane graph induced by a
4-face-colouring.

Since the face colouring is proper then αi , αj , and αk are distinct and
hence the three edges incident to v have different colours. Following this
scheme to assign colours to all edges of G gives a proper 3-edge-colouring
in colours α1, α2, α3, as needed.
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Theorem 11.4. Tait’s Theorem

Theorem 11.4 (continued 2)

Theorem 11.4. Tait’s Theorem.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is
3-edge-colourable.

Proof (continued). Second, suppose that G has a proper
3-edge-colouring in colours 1, 2, 3. Denote by Ei the set of edges of G of
colour i , for i ∈ {1, 2, 3}. The induced subgraph G [Ei ] is a spanning
1-regular subgraph of G (since G is cubic graph with a proper
3-edge-colouring). Set Gij = G [Ei ∪ Ej ] for 1 ≤ i < j ≤ 3. Then each Gij

is a spanning 2-regular subgraph of G (since the G [Ei ] are spanning with
G [Ei ] and G [Ej ] edge disjoint). Then by Exercise 11.1.2/11.2.2, Gij is
2-face-colourable. Also, each face of G is the intersection of a face of G12

and a face of G23 (since G12 and G23 together include all edges; see Figure
11.3 for an illustration of this for the cube Q2).
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Theorem 11.4. Tait’s Theorem

Theorem 11.4 (continued 3)

Proof (continued).

Figure 11.3. (a) A 3-edge-colouring of the cube, (b) 2-face-colourings
(shaded and unshaded) of the spanning subgraphs G12 and G13, (c) the

induced 4-face colouring of the cube.

Consider the 2-face-colourings of G12 and G23, say with the face colours 0
and 1 (with colour 0 represented by unshaded faces and colour 1
represented by shaded faces in Figure 11.3(b)).
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Theorem 11.4. Tait’s Theorem

Theorem 11.4 (continued 4)

Proof (continued). Now assign to each face f of G the ordered pair of
colours assigned to faces G12 and G23 (respectively) whose intersection is
f . This gives a 4-face-colouring of G in the colours α0, α1, α2, α3

mentioned above. Because G = G12 ∪ G23, then this is a proper
4-face-colouring of G (see Figure 11.3(c)), as needed.

Figure 11.3.
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