Graph Theory

Chapter 11. The Four-Colour Problem

11.1. Colourings of Planar Maps—Proofs of Theorems

Table of contents

(1) Theorem 11.4. Tait's Theorem

Theorem 11.4

Theorem 11.4. Tait's Theorem.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is 3-edge-colourable.

Proof. Let G be a 3-connected cubic plane graph.

Theorem 11.4

Theorem 11.4. Tait's Theorem.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is 3-edge-colourable.

Proof. Let G be a 3 -connected cubic plane graph.
First suppose that G has a proper 4 -face-colouring. Denote the colours by the vectors $\alpha_{0}=(0,0), \alpha_{1}=(1,0), \alpha_{2}=(0,1)$, and $\alpha_{3}=(1,1)$ in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. We'll give a 3-edge-colouring of G by assigning to each edge the sum of the colours of the two faces it separates. Notice that since G has no cut edges then each edge separates two distinct faces, so no edge is assigned colour α_{0} under this scheme (since each vector is its own additive inverse in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$).

Theorem 11.4

Theorem 11.4. Tait's Theorem.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is 3-edge-colourable.

Proof. Let G be a 3 -connected cubic plane graph.
First suppose that G has a proper 4 -face-colouring. Denote the colours by the vectors $\alpha_{0}=(0,0), \alpha_{1}=(1,0), \alpha_{2}=(0,1)$, and $\alpha_{3}=(1,1)$ in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. We'll give a 3-edge-colouring of G by assigning to each edge the sum of the colours of the two faces it separates. Notice that since G has no cut edges then each edge separates two distinct faces, so no edge is assigned colour α_{0} under this scheme (since each vector is its own additive inverse in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$). If α_{i}, α_{j}, and α_{k} are the colours assigned to the three faces incident to vertex v, then $\alpha_{i}+\alpha_{j}, \alpha_{i}+\alpha_{k}$, and $\alpha_{j}+\alpha_{k}$ are the colours assigned to the three edges incident with v (see Figure 11.2).

Theorem 11.4

Theorem 11.4. Tait's Theorem.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is 3-edge-colourable.

Proof. Let G be a 3 -connected cubic plane graph.
First suppose that G has a proper 4 -face-colouring. Denote the colours by the vectors $\alpha_{0}=(0,0), \alpha_{1}=(1,0), \alpha_{2}=(0,1)$, and $\alpha_{3}=(1,1)$ in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. We'll give a 3-edge-colouring of G by assigning to each edge the sum of the colours of the two faces it separates. Notice that since G has no cut edges then each edge separates two distinct faces, so no edge is assigned colour α_{0} under this scheme (since each vector is its own additive inverse in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$). If α_{i}, α_{j}, and α_{k} are the colours assigned to the three faces incident to vertex v, then $\alpha_{i}+\alpha_{j}, \alpha_{i}+\alpha_{k}$, and $\alpha_{j}+\alpha_{k}$ are the colours assigned to the three edges incident with v (see Figure 11.2).

Theorem 11.4 (continued 1)

Proof (continued).

Figure 11.2. The 3-edge-colouring of a cubic plane graph induced by a 4-face-colouring.

Since the face colouring is proper then α_{i}, α_{j}, and α_{k} are distinct and hence the three edges incident to v have different colours. Following this scheme to assign colours to all edges of G gives a proper 3-edge-colouring in colours $\alpha_{1}, \alpha_{2}, \alpha_{3}$, as needed.

Theorem 11.4 (continued 2)

Theorem 11.4. Tait's Theorem.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is 3-edge-colourable.

Proof (continued). Second, suppose that G has a proper 3 -edge-colouring in colours $1,2,3$. Denote by E_{i} the set of edges of G of colour i, for $i \in\{1,2,3\}$. The induced subgraph $G\left[E_{i}\right]$ is a spanning 1-regular subgraph of G (since G is cubic graph with a proper 3-edge-colouring). Set $G_{i j}=G\left[E_{i} \cup E_{j}\right]$ for $1 \leq i<j \leq 3$. Then each $G_{i j}$ is a spanning 2 -regular subgraph of G (since the $G\left[E_{i}\right]$ are spanning with $G\left[E_{i}\right]$ and $G\left[E_{j}\right]$ edge disjoint). Then by Exercise 11.1.2/11.2.2, $G_{i j}$ is 2-face-colourable. Also, each face of G is the intersection of a face of G_{12} and a face of G_{23} (since G_{12} and G_{23} together include all edges; see Figure 11.3 for an illustration of this for the cube Q_{2}).

Theorem 11.4 (continued 2)

Theorem 11.4. Tait's Theorem.
A 3-connected cubic plane graph is 4-face-colourable if and only if it is 3-edge-colourable.

Proof (continued). Second, suppose that G has a proper 3-edge-colouring in colours $1,2,3$. Denote by E_{i} the set of edges of G of colour i, for $i \in\{1,2,3\}$. The induced subgraph $G\left[E_{i}\right]$ is a spanning 1-regular subgraph of G (since G is cubic graph with a proper 3-edge-colouring). Set $G_{i j}=G\left[E_{i} \cup E_{j}\right]$ for $1 \leq i<j \leq 3$. Then each $G_{i j}$ is a spanning 2 -regular subgraph of G (since the $G\left[E_{i}\right]$ are spanning with $G\left[E_{i}\right]$ and $G\left[E_{j}\right]$ edge disjoint). Then by Exercise 11.1.2/11.2.2, $G_{i j}$ is 2-face-colourable. Also, each face of G is the intersection of a face of G_{12} and a face of G_{23} (since G_{12} and G_{23} together include all edges; see Figure 11.3 for an illustration of this for the cube Q_{2}).

Theorem 11.4 (continued 3)

Proof (continued).

(a)

(c)

Figure 11.3. (a) A 3-edge-colouring of the cube, (b) 2-face-colourings (shaded and unshaded) of the spanning subgraphs G_{12} and G_{13}, (c) the induced 4 -face colouring of the cube.
Consider the 2-face-colourings of G_{12} and G_{23}, say with the face colours 0 and 1 (with colour 0 represented by unshaded faces and colour 1 represented by shaded faces in Figure 11.3(b)).

Theorem 11.4 (continued 4)

Proof (continued). Now assign to each face f of G the ordered pair of colours assigned to faces G_{12} and G_{23} (respectively) whose intersection is f. This gives a 4-face-colouring of G in the colours $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ mentioned above. Because $G=G_{12} \cup G_{23}$, then this is a proper 4-face-colouring of G (see Figure 11.3(c)), as needed.

Figure 11.3.

