## Graph Theory

## Chapter 11. The Four-Colour Problem

11.2. The Five-Colour Theorem—Proofs of Theorems


## Table of contents

(1) Theorem 11.6. The Five-Colour Theorem

## Theorem 11.6

Theorem 11.6. The Five-Colour Theorem. Every loopless planar graph is 5-colourable.

Proof. We give a proof based on induction on the number of vertices. As observed in Note 11.1.A, it suffices to prove the result for 3-connected triangulations. So let $G$ be such a triangulation. The result holds for $G=K_{5} \backslash e$, so we take this as a base case. For the induction hypothesis, suppose the result holds for all appropriate graphs on $n-1$ vertices and let $G$ have $n$ vertices. Since $G$ is simple and planar then by Corollary 10.22 it has a vertex v of degree at most five. Consider the plane graph $H=G-v$.

## Theorem 11.6

Theorem 11.6. The Five-Colour Theorem.
Every loopless planar graph is 5-colourable.
Proof. We give a proof based on induction on the number of vertices. As observed in Note 11.1.A, it suffices to prove the result for 3-connected triangulations. So let $G$ be such a triangulation. The result holds for $G=K_{5} \backslash e$, so we take this as a base case. For the induction hypothesis, suppose the result holds for all appropriate graphs on $n-1$ vertices and let $G$ have $n$ vertices. Since $G$ is simple and planar then by Corollary 10.22 it has a vertex $v$ of degree at most five. Consider the plane graph $H=G-v$. By the induction hypothesis, $H$ has a proper 5 -colouring. If in this colouring of $H$, one of the five colourings is assigned to no neighbor of $v$ then we may assign that colour to $v$ giving a proper 5-colouring of $G$ and the result holds for all graphs by induction. So we only need to consider the case where the five neighbors of $v$ are all different colours. We now show that this is not the case by way of contradiction.

## Theorem 11.6

Theorem 11.6. The Five-Colour Theorem.
Every loopless planar graph is 5-colourable.
Proof. We give a proof based on induction on the number of vertices. As observed in Note 11.1.A, it suffices to prove the result for 3-connected triangulations. So let $G$ be such a triangulation. The result holds for $G=K_{5} \backslash e$, so we take this as a base case. For the induction hypothesis, suppose the result holds for all appropriate graphs on $n-1$ vertices and let $G$ have $n$ vertices. Since $G$ is simple and planar then by Corollary 10.22 it has a vertex $v$ of degree at most five. Consider the plane graph $H=G-v$. By the induction hypothesis, $H$ has a proper 5 -colouring. If in this colouring of $H$, one of the five colourings is assigned to no neighbor of $v$ then we may assign that colour to $v$ giving a proper 5-colouring of $G$ and the result holds for all graphs by induction. So we only need to consider the case where the five neighbors of $v$ are all different colours. We now show that this is not the case by way of contradiction.

## Theorem 11.6 (continued 1)

Proof (continued). ASSUME that vertices $v$ of degree five in graph $G$ has neighbors all of different colours. Let the neighbors of $v$ be $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be the facial cycle of $H$ containing these vertices:


In $G$


Facial cycle C in H

Let the colours of vertex $v_{i}$ be denoted as $i$ where $i \in\{1,2,3,4,5\}$. We may suppose that the vertex $v$ of $G$ lies in $\operatorname{int}(C)$ (see the image above), so bridges of $C$ in $H$ are outer bridges.

## Theorem 11.6 (continued 1)

Proof (continued). ASSUME that vertices $v$ of degree five in graph $G$ has neighbors all of different colours. Let the neighbors of $v$ be $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be the facial cycle of $H$ containing these vertices:


In $G$


Facial cycle C in H

Let the colours of vertex $v_{i}$ be denoted as $i$ where $i \in\{1,2,3,4,5\}$. We may suppose that the vertex $v$ of $G$ lies in $\operatorname{int}(C)$ (see the image above), so bridges of $C$ in $H$ are outer bridges.

## Theorem 11.6 (continued 2)

Proof (continued). If there is no bridge of $C$ in $H$ containing both $v_{1}$ and $v_{3}$, then by swapping the colours of the vertices coloured 1 and 3 in all the bridges of $C$ containing $v_{1}$ (remember that the bridges are internally disjoint), we obtain a proper 5 -colouring of $H$ in which no vertex of $C$ has colour 1 . This colour may now be assigned to $v_{1}$ resulting in a proper 5 -colouring of $G$. So we may assume without loss of generality that there is a bridge $B_{1}$ of $C$ in $H$ having $v_{1}$ and $v_{3}$ as vertices of attachments.
Similarly, there is a bridge $B_{2}$ of $C$ in $H$ having $v_{2}$ and $v_{4}$ as vertices of attachment. But then the bridges $B_{1}$ and $B_{2}$ overlap, CONTRADICTING Theorem 10.26 which implies that outer bridges avoid one another. So the assumption that the neighbors of $v$ are all of a different colour is false Hence $v$ can be assigned the "moving colour" as described above, giving a 5-colouring of $G$, as claimed.

## Theorem 11.6 (continued 2)

Proof (continued). If there is no bridge of $C$ in $H$ containing both $v_{1}$ and $v_{3}$, then by swapping the colours of the vertices coloured 1 and 3 in all the bridges of $C$ containing $v_{1}$ (remember that the bridges are internally disjoint), we obtain a proper 5 -colouring of $H$ in which no vertex of $C$ has colour 1. This colour may now be assigned to $v_{1}$ resulting in a proper 5-colouring of $G$. So we may assume without loss of generality that there is a bridge $B_{1}$ of $C$ in $H$ having $v_{1}$ and $v_{3}$ as vertices of attachments. Similarly, there is a bridge $B_{2}$ of $C$ in $H$ having $v_{2}$ and $v_{4}$ as vertices of attachment. But then the bridges $B_{1}$ and $B_{2}$ overlap, CONTRADICTING Theorem 10.26 which implies that outer bridges avoid one another. So the assumption that the neighbors of $v$ are all of a different colour is false. Hence $v$ can be assigned the "moving colour" as described above, giving a 5 -colouring of $G$, as claimed.

