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Lemma 12.4
Graph Theory
Chapter 12. Stable Sets and Cliques Lemma 12.4. Let P be a path partition of a digraph D. Suppose that no
12.1. Stable Sets—Proofs of Theorems stable set of D is orthogonal to P. Then there is a path partition Q of D

such that |Q| = |P| — 1, i(Q) C i(P), and t(Q) C t(P) where i(P)
denotes the set of initial vertices of the paths in P and t(P) is the set of
terminal vertices of the paths in P.

Ug%mﬂ; Proof. If D has n = 1 vertices then there is no path partition of D and
Graph Theory the result holds vacuously, so we assume without loss of generality that D

has n > 2 vertices. We give an induction proof and take as the induction

: . hypothesis that the claim holds for all directed graphs on n — 1 vertices.

s\VainVl; By hypothesis, t(P) is not a stable set, so there are vertices y,z € t(P)
L such that act (y, z) is an arc of D.
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Lemma 12.4 (continued 1) Lemma 12.4 (continued 2)
Proof (continued). If vertex z is (trivial) path in P, then we define Q to . o ) _
be the path partition by deleting this trivial path and extending the path in P:‘oof (continued). Defln.e.dlgraE)h D /: D , z, directed path, _
P that terminates at vertex y (such a path exists since y € t(P)) by the 'D, = P —z, and path partltlor: P'of D' as P = (P\{p}H)UP". Thatis,
arc (y, z) as shown in Figure 12.3 and the claim holds. P is the restriction of P to D’ (see Figure 12.4).
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‘ There is no stable set in D’ orthogonal to P’, or else this stable set would
So we may now assume without loss of generality that z is the terminal be a stable set in D orthogonal to P, contradicting the hypotheses. Notice
vertex of some nontrivial (directed) path P. Let x be the predecessor of z that (see Figure 12.4 again) t(P') = t(P(\{z}) U {x} and i(P’) — i(P).

in path P.



Lemma 12.4 (continued 3)

Proof (continued). Now D’ has n — 1 vertices and so by the induction
hypothesis there is a path partition Q' of D’ such that |Q'| = |P’| — 1m
i(Q) Ci(P), and t(Q') C t(P).

If x € t(Q') then we define Q to be the path partition of D obtained from
Q' by extending the path of Q' that terminates at x by the arc (x, z) (see
Figure 12.5).

Q' Figure 12.5.
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Theorem 12.5. Dilworth’s Theorem

Theorem 12.5 Dilworth’s Theorem.

The minimum number of chains into which the elements of a partially
ordered (finite) set P can be partitioned is equal to the maximum number
of elements in an antichain of P.

Proof. Let the “poset” be P = (X, <) where X is a finite set. Define
digraph D = D(P) with vertex set X and arcs (u, v) whenever u < v in P.
A chain x; < x» < --- < x, of P corresponds to a directed path from
vertex x; to x, in D. An antichain (of elements of X, no two of which are
comparable) of P correspond to a stable set in D. No two elements of an
antichain of P can belong to a common chain (because of transitivity of
<), so the minimum number of chains in a chain partition is at least as
large as the maximum number of elements in an antichain.
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Lemma 12.4 (continued 4)

Lemma 12.4. Let P be a path partition of a digraph D. Suppose that no
stable set of D is orthogonal to P. Then there is a path partition Q of D
such that |Q| = |P| — 1, i(Q) C i(P), and t(Q) C t(P).

Proof (continued). Then |Q| = [P| — 1 (since |P'| = |P| and |Q'| = |Q],
i(Q C i(P), and t(Q) C t(P) (in fact, the initial and terminal sets are
equal; see Figures 12.4 and 12.5 again).

If x & t(Q'), then y € t(Q') (there is one less path in Q' than in P’ and
so there is one less terminal vertex in t(Q’) than in t(P’). so for x € t(P’)
if x € t(Q') then all other elements of t(P’) = (t(P)\ {z}) U {x} must be
in t(Q’), including y € t(P)). Define Q to be the path partition of D
obtained from Q' by extending the path of Q’ that terminates at y by the
arc (y, z) of D. Again, |Q'| = |Q|, i(Q) C i(P), and t(Q) C t(P). So the
induction step holds and by mathematical induction the result holds for all
digraphs D on n > 1 vertices, as claimed. O
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Theorem 12.5. Dilworth's Theorem

Theorem 12.5. Dilworth's Theorem (continued)

Theorem 12.5 Dilworth’s Theorem.

The minimum number of chains into which the elements of a partially
ordered (finite) set P can be partitioned is equal to the maximum number
of elements in an antichain of P.

Proof (continued). Now the minimum number of paths in a path
partition of D (which we have denoted as (D)) is at least as large as the
maximum number of elements in a stable set in D (which is the stability
number of D, «(D)); that is, m > «. By the Gallai-Milgram Theorem

7 < a. Therefore m = ««. That is, the minimum number of chains is a
partitioning of P into chains is equal to the maximum size of an antichain
of P, as claimed. O
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Theorem 12.6. Richardson’'s Theorem

Theorem 12.6. Richardson’s Theorem.
Let D be a digraph which contains no directed odd cycle. Then S has a
kernel.

Proof. If D has n = 1 vertex then the single vertex forms a kernel. If D
has n = 2 vertices then it is bipartite and each individual vertex forms a

kernel (unless D has no arcs, in which case the whole vertex set forms a

kernel). We give an induction proof and take as the induction hypothesis
that the claim holds for all directed graphs on less than n vertices.

By Exercise 3.4.11, a strongly connected digraph which contains an odd
cycle also contains a directed odd cycle. Since digraph D contains no
directed off cycle, then it contains no odd cycle (more precisely, its
underlying graph contains no off cycle). So by Theorem 4.7, D is bipartite.
Each partite set of the bipartition is a kernel of D.
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Theorem 12.6. Richardson’s Theorem

Theorem 12.6. Richardson’s Theorem (continued 2)

Proof (continued). Since S; is a kernel in D», then each vertex in S, is
dominated by some vertex in

V(Dy) — V(S2) = V(D) — (VAU Vo) — V(S2). By choice each vertex in $;
by some vertex in V5. So each vertex of S5 U S, is dominated by some
vertex in

(V(D)— (ViU Vo) = V(S)U Ve = V(D)— Vi — V(S)
= V(D) —V(Dy) — V(52)
c V(D) - V(5) - V(S)
since V(S51) C V(D1)
— V(D)= V(SUS)

and so 51 U S, is a kernel of D. Therefore the result holds for all V' with n
vertices. By mathematical induction, the result holds for all digraphs D, as
claimed. 0
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Theorem 12.6. Richardson’s Theorem

Theorem 12.6. Richardson’s Theorem (continued 1)

Theorem 12.6. Richardson’s Theorem.
Let D be a digraph which contains no directed odd cycle. Then S has a
kernel.

Proof (continued). If D is not strongly connected, then let D; be a
minimal strongly connected component of D (that is, one that dominates
no other strongly connected component; by Exercise 3.4.6d(i), a minimal
strongly connected component exists for every digraph D). Set

V1 = V(D). Since D; is a proper subgraph of D (unless D is a complete
digraph with n > 2 vertices, but then it contains a directed odd cycle in
violation of the hypotheses). By the induction hypothesis, D; has a kernel
51. Let V5 be the set of vertices of D that dominate vertices of Sy, and
define D, = D — (V1 U V). Again by induction, D has a kernel S,. Since
51 is a kernel of D; then Sy is a stable set in Dy; since Sy is a kernel in D5
then S5 is a kernel of D». Since Dy and D, share no vertices then
S=5US; is a stable set in D.
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