Graph Theory

Chapter 12. Stable Sets and Cliques 12.1. Stable Sets—Proofs of Theorems

Lemma 12.4

Lemma 12.4. Let \mathcal{P} be a path partition of a digraph D. Suppose that no stable set of D is orthogonal to \mathcal{P} . Then there is a path partition \mathcal{Q} of D such that $|\mathcal{Q}| = |\mathcal{P}| - 1$, $i(\mathcal{Q}) \subset i(\mathcal{P})$, and $t(\mathcal{Q}) \subset t(\mathcal{P})$ where $i(\mathcal{P})$ denotes the set of initial vertices of the paths in \mathcal{P} and $t(\mathcal{P})$ is the set of terminal vertices of the paths in \mathcal{P} .

Proof. If D has n = 1 vertices then there is no path partition of D and the result holds vacuously, so we assume without loss of generality that D has $n \ge 2$ vertices. We give an induction proof and take as the induction hypothesis that the claim holds for all directed graphs on n - 1 vertices. By hypothesis, $t(\mathcal{P})$ is not a stable set, so there are vertices $y, z \in t(\mathcal{P})$ such that act (y, z) is an arc of D.

Lemma 12.4

Lemma 12.4. Let \mathcal{P} be a path partition of a digraph D. Suppose that no stable set of D is orthogonal to \mathcal{P} . Then there is a path partition \mathcal{Q} of D such that $|\mathcal{Q}| = |\mathcal{P}| - 1$, $i(\mathcal{Q}) \subset i(\mathcal{P})$, and $t(\mathcal{Q}) \subset t(\mathcal{P})$ where $i(\mathcal{P})$ denotes the set of initial vertices of the paths in \mathcal{P} and $t(\mathcal{P})$ is the set of terminal vertices of the paths in \mathcal{P} .

Proof. If D has n = 1 vertices then there is no path partition of D and the result holds vacuously, so we assume without loss of generality that D has $n \ge 2$ vertices. We give an induction proof and take as the induction hypothesis that the claim holds for all directed graphs on n - 1 vertices. By hypothesis, $t(\mathcal{P})$ is not a stable set, so there are vertices $y, z \in t(\mathcal{P})$ such that act (y, z) is an arc of D.

Lemma 12.4 (continued 1)

Proof (continued). If vertex z is (trivial) path in \mathcal{P} , then we define \mathcal{Q} to be the path partition by deleting this trivial path and extending the path in \mathcal{P} that terminates at vertex y (such a path exists since $y \in t(\mathcal{P})$) by the arc (y, z) as shown in Figure 12.3 and the claim holds.

So we may now assume without loss of generality that z is the terminal vertex of some nontrivial (directed) path P. Let x be the predecessor of z in path P.

Lemma 12.4 (continued 2)

Proof (continued). Define digraph D' = D - z, directed path P' = P - z, and path partition \mathcal{P}' of D' as $\mathcal{P}' = (\mathcal{P} \setminus \{p\}) \cup P'$. That is, \mathcal{P}' is the restriction of \mathcal{P} to D' (see Figure 12.4).

There is no stable set in D' orthogonal to \mathcal{P}' , or else this stable set would be a stable set in D orthogonal to \mathcal{P} , contradicting the hypotheses. Notice that (see Figure 12.4 again) $t(\mathcal{P}') = t(\mathcal{P}(\setminus \{z\}) \cup \{x\} \text{ and } i(\mathcal{P}') - i(\mathcal{P}).$

Lemma 12.4 (continued 3)

Proof (continued). Now D' has n-1 vertices and so by the induction hypothesis there is a path partition Q' of D' such that $|Q'| = |\mathcal{P}'| - 1m$ $i(Q') \subset i(\mathcal{P}')$, and $t(Q') \subset t(\mathcal{P}')$.

If $x \in t(\mathcal{Q}')$ then we define \mathcal{Q} to be the path partition of D obtained from \mathcal{Q}' by extending the path of \mathcal{Q}' that terminates at x by the arc (x, z) (see Figure 12.5).

Lemma 12.4 (continued 3)

Proof (continued). Now D' has n-1 vertices and so by the induction hypothesis there is a path partition Q' of D' such that $|Q'| = |\mathcal{P}'| - 1m$ $i(Q') \subset i(\mathcal{P}')$, and $t(Q') \subset t(\mathcal{P}')$.

If $x \in t(Q')$ then we define Q to be the path partition of D obtained from Q' by extending the path of Q' that terminates at x by the arc (x, z) (see Figure 12.5).

Lemma 12.4 (continued 3)

Proof (continued). Now D' has n-1 vertices and so by the induction hypothesis there is a path partition Q' of D' such that $|Q'| = |\mathcal{P}'| - 1m$ $i(Q') \subset i(\mathcal{P}')$, and $t(Q') \subset t(\mathcal{P}')$.

If $x \in t(Q')$ then we define Q to be the path partition of D obtained from Q' by extending the path of Q' that terminates at x by the arc (x, z) (see Figure 12.5).

Lemma 12.4 (continued 4)

Lemma 12.4. Let \mathcal{P} be a path partition of a digraph D. Suppose that no stable set of D is orthogonal to \mathcal{P} . Then there is a path partition \mathcal{Q} of D such that $|\mathcal{Q}| = |\mathcal{P}| - 1$, $i(\mathcal{Q}) \subset i(\mathcal{P})$, and $t(\mathcal{Q}) \subset t(\mathcal{P})$.

Proof (continued). Then $|\mathcal{Q}| = |\mathcal{P}| - 1$ (since $|\mathcal{P}'| = |\mathcal{P}|$ and $|\mathcal{Q}'| = |\mathcal{Q}|$, $i(\mathcal{Q} \subset i(\mathcal{P}))$, and $t(\mathcal{Q}) \subset t(\mathcal{P})$ (in fact, the initial and terminal sets are equal; see Figures 12.4 and 12.5 again).

If $x \notin t(Q')$, then $y \in t(Q')$ (there is one less path in Q' than in \mathcal{P}' and so there is one less terminal vertex in t(Q') than in $t(\mathcal{P}')$. so for $x \in t(\mathcal{P}')$ if $x \notin t(Q')$ then all other elements of $t(\mathcal{P}') = (t(\mathcal{P}) \setminus \{z\}) \cup \{x\}$ must be in t(Q'), including $y \in t(\mathcal{P})$). Define Q to be the path partition of Dobtained from Q' by extending the path of Q' that terminates at y by the arc (y, z) of D. Again, |Q'| = |Q|, $i(Q) \subset i(\mathcal{P})$, and $t(Q) \subset t(\mathcal{P})$. So the induction step holds and by mathematical induction the result holds for all digraphs D on $n \ge 1$ vertices, as claimed.

Lemma 12.4 (continued 4)

Lemma 12.4. Let \mathcal{P} be a path partition of a digraph D. Suppose that no stable set of D is orthogonal to \mathcal{P} . Then there is a path partition \mathcal{Q} of D such that $|\mathcal{Q}| = |\mathcal{P}| - 1$, $i(\mathcal{Q}) \subset i(\mathcal{P})$, and $t(\mathcal{Q}) \subset t(\mathcal{P})$.

Proof (continued). Then $|\mathcal{Q}| = |\mathcal{P}| - 1$ (since $|\mathcal{P}'| = |\mathcal{P}|$ and $|\mathcal{Q}'| = |\mathcal{Q}|$, $i(\mathcal{Q} \subset i(\mathcal{P}))$, and $t(\mathcal{Q}) \subset t(\mathcal{P})$ (in fact, the initial and terminal sets are equal; see Figures 12.4 and 12.5 again).

If $x \notin t(Q')$, then $y \in t(Q')$ (there is one less path in Q' than in \mathcal{P}' and so there is one less terminal vertex in t(Q') than in $t(\mathcal{P}')$. so for $x \in t(\mathcal{P}')$ if $x \notin t(Q')$ then all other elements of $t(\mathcal{P}') = (t(\mathcal{P}) \setminus \{z\}) \cup \{x\}$ must be in t(Q'), including $y \in t(\mathcal{P})$). Define Q to be the path partition of Dobtained from Q' by extending the path of Q' that terminates at y by the arc (y, z) of D. Again, |Q'| = |Q|, $i(Q) \subset i(\mathcal{P})$, and $t(Q) \subset t(\mathcal{P})$. So the induction step holds and by mathematical induction the result holds for all digraphs D on $n \ge 1$ vertices, as claimed.

Theorem 12.5. Dilworth's Theorem

Theorem 12.5 Dilworth's Theorem.

The minimum number of chains into which the elements of a partially ordered (finite) set P can be partitioned is equal to the maximum number of elements in an antichain of P.

Proof. Let the "poset" be $P = (X, \prec)$ where X is a finite set. Define digraph D = D(P) with vertex set X and arcs (u, v) whenever $u \prec v$ in P. A chain $x_1 \prec x_2 \prec \cdots \prec x_n$ of P corresponds to a directed path from vertex x_1 to x_n in D. An antichain (of elements of X, no two of which are comparable) of P correspond to a stable set in D. No two elements of an antichain of P can belong to a common chain (because of transitivity of \prec), so the minimum number of chains in a chain partition is at least as large as the maximum number of elements in an antichain.

Theorem 12.5. Dilworth's Theorem

Theorem 12.5 Dilworth's Theorem.

The minimum number of chains into which the elements of a partially ordered (finite) set P can be partitioned is equal to the maximum number of elements in an antichain of P.

Proof. Let the "poset" be $P = (X, \prec)$ where X is a finite set. Define digraph D = D(P) with vertex set X and arcs (u, v) whenever $u \prec v$ in P. A chain $x_1 \prec x_2 \prec \cdots \prec x_n$ of P corresponds to a directed path from vertex x_1 to x_n in D. An antichain (of elements of X, no two of which are comparable) of P correspond to a stable set in D. No two elements of an antichain of P can belong to a common chain (because of transitivity of \prec), so the minimum number of chains in a chain partition is at least as large as the maximum number of elements in an antichain.

Theorem 12.5. Dilworth's Theorem (continued)

Theorem 12.5 Dilworth's Theorem.

The minimum number of chains into which the elements of a partially ordered (finite) set P can be partitioned is equal to the maximum number of elements in an antichain of P.

Proof (continued). Now the minimum number of paths in a path partition of D (which we have denoted as $\pi(D)$) is at least as large as the maximum number of elements in a stable set in D (which is the stability number of D, $\alpha(D)$); that is, $\pi \ge \alpha$. By the Gallai-Milgram Theorem $\pi \le \alpha$. Therefore $\pi = \alpha$. That is, the minimum number of chains is a partitioning of P into chains is equal to the maximum size of an antichain of P, as claimed.

Theorem 12.6. Richardson's Theorem. Let D be a digraph which contains no directed odd cycle. Then S has a kernel.

Proof. If *D* has n = 1 vertex then the single vertex forms a kernel. If *D* has n = 2 vertices then it is bipartite and each individual vertex forms a kernel (unless *D* has no arcs, in which case the whole vertex set forms a kernel). We give an induction proof and take as the induction hypothesis that the claim holds for all directed graphs on less than *n* vertices.

Theorem 12.6. Richardson's Theorem.

Let D be a digraph which contains no directed odd cycle. Then S has a kernel.

Proof. If *D* has n = 1 vertex then the single vertex forms a kernel. If *D* has n = 2 vertices then it is bipartite and each individual vertex forms a kernel (unless *D* has no arcs, in which case the whole vertex set forms a kernel). We give an induction proof and take as the induction hypothesis that the claim holds for all directed graphs on less than *n* vertices.

By Exercise 3.4.11, a strongly connected digraph which contains an odd cycle also contains a directed odd cycle. Since digraph D contains no directed off cycle, then it contains no odd cycle (more precisely, its underlying graph contains no off cycle). So by Theorem 4.7, D is bipartite. Each partite set of the bipartition is a kernel of D.

Theorem 12.6. Richardson's Theorem.

Let D be a digraph which contains no directed odd cycle. Then S has a kernel.

Proof. If *D* has n = 1 vertex then the single vertex forms a kernel. If *D* has n = 2 vertices then it is bipartite and each individual vertex forms a kernel (unless *D* has no arcs, in which case the whole vertex set forms a kernel). We give an induction proof and take as the induction hypothesis that the claim holds for all directed graphs on less than *n* vertices.

By Exercise 3.4.11, a strongly connected digraph which contains an odd cycle also contains a directed odd cycle. Since digraph D contains no directed off cycle, then it contains no odd cycle (more precisely, its underlying graph contains no off cycle). So by Theorem 4.7, D is bipartite. Each partite set of the bipartition is a kernel of D.

Theorem 12.6. Richardson's Theorem (continued 1)

Theorem 12.6. Richardson's Theorem.

Let D be a digraph which contains no directed odd cycle. Then S has a kernel.

Proof (continued). If D is not strongly connected, then let D_1 be a minimal strongly connected component of D (that is, one that dominates no other strongly connected component; by Exercise 3.4.6d(i), a minimal strongly connected component exists for every digraph D). Set $V_1 = V(D_1)$. Since D_1 is a proper subgraph of D (unless D is a complete digraph with n > 2 vertices, but then it contains a directed odd cycle in violation of the hypotheses). By the induction hypothesis, D_1 has a kernel S_1 . Let V_2 be the set of vertices of D that dominate vertices of S_1 , and define $D_2 = D - (V_1 \cup V_2)$. Again by induction, D_2 has a kernel S_2 . Since S_1 is a kernel of D_1 then S_1 is a stable set in D_1 ; since S_2 is a kernel in D_2 then S_2 is a kernel of D_2 . Since D_1 and D_2 share no vertices then $S = S_1 \cup S_2$ is a stable set in D.

Theorem 12.6. Richardson's Theorem (continued 1)

Theorem 12.6. Richardson's Theorem.

Let D be a digraph which contains no directed odd cycle. Then S has a kernel.

Proof (continued). If D is not strongly connected, then let D_1 be a minimal strongly connected component of D (that is, one that dominates no other strongly connected component; by Exercise 3.4.6d(i), a minimal strongly connected component exists for every digraph D). Set $V_1 = V(D_1)$. Since D_1 is a proper subgraph of D (unless D is a complete digraph with n > 2 vertices, but then it contains a directed odd cycle in violation of the hypotheses). By the induction hypothesis, D_1 has a kernel S_1 . Let V_2 be the set of vertices of D that dominate vertices of S_1 , and define $D_2 = D - (V_1 \cup V_2)$. Again by induction, D_2 has a kernel S_2 . Since S_1 is a kernel of D_1 then S_1 is a stable set in D_1 ; since S_2 is a kernel in D_2 then S_2 is a kernel of D_2 . Since D_1 and D_2 share no vertices then $S = S_1 \cup S_2$ is a stable set in D.

Theorem 12.6. Richardson's Theorem (continued 2)

Proof (continued). Since S_2 is a kernel in D_2 , then each vertex in S_2 is dominated by some vertex in $V(D_2) - V(S_2) = V(D) - (V_1 \cup V_2) - V(S_2)$. By choice each vertex in S_1 by some vertex in V_2 . So each vertex of $S_1 \cup S_2$ is dominated by some vertex in

$$(V(D) - (V_1 \cup V_2) - V(S_2)) \cup V_2 = V(D) - V_1 - V(S_2)$$

= $V(D) - V(D_1) - V(S_2)$
 $\subset V(D) - V(S_1) - V(S_2)$
since $V(S_1) \subset V(D_1)$
= $V(D) - V(S_1 \cup S_2)$

and so $S_1 \cup S_2$ is a kernel of D. Therefore the result holds for all V with n vertices. By mathematical induction, the result holds for all digraphs D, as claimed.