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Lemma 12.4

Lemma 12.4

Lemma 12.4. Let P be a path partition of a digraph D. Suppose that no
stable set of D is orthogonal to P. Then there is a path partition Q of D
such that |Q| = |P| − 1, i(Q) ⊂ i(P), and t(Q) ⊂ t(P) where i(P)
denotes the set of initial vertices of the paths in P and t(P) is the set of
terminal vertices of the paths in P.

Proof. If D has n = 1 vertices then there is no path partition of D and
the result holds vacuously, so we assume without loss of generality that D
has n ≥ 2 vertices. We give an induction proof and take as the induction
hypothesis that the claim holds for all directed graphs on n − 1 vertices.
By hypothesis, t(P) is not a stable set, so there are vertices y , z ∈ t(P)
such that act (y , z) is an arc of D.
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Lemma 12.4

Lemma 12.4 (continued 1)

Proof (continued). If vertex z is (trivial) path in P, then we define Q to
be the path partition by deleting this trivial path and extending the path in
P that terminates at vertex y (such a path exists since y ∈ t(P)) by the
arc (y , z) as shown in Figure 12.3 and the claim holds.

Figure 12.3.

So we may now assume without loss of generality that z is the terminal
vertex of some nontrivial (directed) path P. Let x be the predecessor of z
in path P.
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Lemma 12.4

Lemma 12.4 (continued 2)

Proof (continued). Define digraph D ′ = D − z , directed path
P ′ = P − z , and path partition P ′ of D ′ as P ′ = (P \ {p}) ∪ P ′. That is,
P ′ is the restriction of P to D ′ (see Figure 12.4).

Figure 12.4.

There is no stable set in D ′ orthogonal to P ′, or else this stable set would
be a stable set in D orthogonal to P, contradicting the hypotheses. Notice
that (see Figure 12.4 again) t(P ′) = t(P(\{z}) ∪ {x} and i(P ′)− i(P).
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Lemma 12.4

Lemma 12.4 (continued 3)

Proof (continued). Now D ′ has n − 1 vertices and so by the induction
hypothesis there is a path partition Q′ of D ′ such that |Q′| = |P ′| − 1m
i(Q′) ⊂ i(P ′), and t(Q′) ⊂ t(P ′).

If x ∈ t(Q′) then we define Q to be the path partition of D obtained from
Q′ by extending the path of Q′ that terminates at x by the arc (x , z) (see
Figure 12.5).

Figure 12.5.
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Lemma 12.4

Lemma 12.4 (continued 4)

Lemma 12.4. Let P be a path partition of a digraph D. Suppose that no
stable set of D is orthogonal to P. Then there is a path partition Q of D
such that |Q| = |P| − 1, i(Q) ⊂ i(P), and t(Q) ⊂ t(P).

Proof (continued). Then |Q| = |P| − 1 (since |P ′| = |P| and |Q′| = |Q|,
i(Q ⊂ i(P), and t(Q) ⊂ t(P) (in fact, the initial and terminal sets are
equal; see Figures 12.4 and 12.5 again).

If x 6∈ t(Q′), then y ∈ t(Q′) (there is one less path in Q′ than in P ′ and
so there is one less terminal vertex in t(Q′) than in t(P ′). so for x ∈ t(P ′)
if x 6∈ t(Q′) then all other elements of t(P ′) = (t(P) \ {z})∪ {x} must be
in t(Q′), including y ∈ t(P)). Define Q to be the path partition of D
obtained from Q′ by extending the path of Q′ that terminates at y by the
arc (y , z) of D. Again, |Q′| = |Q|, i(Q) ⊂ i(P), and t(Q) ⊂ t(P). So the
induction step holds and by mathematical induction the result holds for all
digraphs D on n ≥ 1 vertices, as claimed.
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Theorem 12.5. Dilworth’s Theorem

Theorem 12.5. Dilworth’s Theorem

Theorem 12.5 Dilworth’s Theorem.
The minimum number of chains into which the elements of a partially
ordered (finite) set P can be partitioned is equal to the maximum number
of elements in an antichain of P.

Proof. Let the “poset” be P = (X ,≺) where X is a finite set. Define
digraph D = D(P) with vertex set X and arcs (u, v) whenever u ≺ v in P.
A chain x1 ≺ x2 ≺ · · · ≺ xn of P corresponds to a directed path from
vertex x1 to xn in D. An antichain (of elements of X , no two of which are
comparable) of P correspond to a stable set in D. No two elements of an
antichain of P can belong to a common chain (because of transitivity of
≺), so the minimum number of chains in a chain partition is at least as
large as the maximum number of elements in an antichain.
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Theorem 12.5. Dilworth’s Theorem

Theorem 12.5. Dilworth’s Theorem (continued)

Theorem 12.5 Dilworth’s Theorem.
The minimum number of chains into which the elements of a partially
ordered (finite) set P can be partitioned is equal to the maximum number
of elements in an antichain of P.

Proof (continued). Now the minimum number of paths in a path
partition of D (which we have denoted as π(D)) is at least as large as the
maximum number of elements in a stable set in D (which is the stability
number of D, α(D)); that is, π ≥ α. By the Gallai-Milgram Theorem
π ≤ α. Therefore π = α. That is, the minimum number of chains is a
partitioning of P into chains is equal to the maximum size of an antichain
of P, as claimed.
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Theorem 12.6. Richardson’s Theorem

Theorem 12.6. Richardson’s Theorem.
Let D be a digraph which contains no directed odd cycle. Then S has a
kernel.

Proof. If D has n = 1 vertex then the single vertex forms a kernel. If D
has n = 2 vertices then it is bipartite and each individual vertex forms a
kernel (unless D has no arcs, in which case the whole vertex set forms a
kernel). We give an induction proof and take as the induction hypothesis
that the claim holds for all directed graphs on less than n vertices.

By Exercise 3.4.11, a strongly connected digraph which contains an odd
cycle also contains a directed odd cycle. Since digraph D contains no
directed off cycle, then it contains no odd cycle (more precisely, its
underlying graph contains no off cycle). So by Theorem 4.7, D is bipartite.
Each partite set of the bipartition is a kernel of D.
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Theorem 12.6. Richardson’s Theorem

Theorem 12.6. Richardson’s Theorem (continued 1)

Theorem 12.6. Richardson’s Theorem.
Let D be a digraph which contains no directed odd cycle. Then S has a
kernel.

Proof (continued). If D is not strongly connected, then let D1 be a
minimal strongly connected component of D (that is, one that dominates
no other strongly connected component; by Exercise 3.4.6d(i), a minimal
strongly connected component exists for every digraph D). Set
V1 = V (D1). Since D1 is a proper subgraph of D (unless D is a complete
digraph with n > 2 vertices, but then it contains a directed odd cycle in
violation of the hypotheses). By the induction hypothesis, D1 has a kernel
S1. Let V2 be the set of vertices of D that dominate vertices of S1, and
define D2 = D − (V1 ∪ V2). Again by induction, D2 has a kernel S2. Since
S1 is a kernel of D1 then S1 is a stable set in D1; since S2 is a kernel in D2

then S2 is a kernel of D2. Since D1 and D2 share no vertices then
S = S1 ∪ S2 is a stable set in D.
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Theorem 12.6. Richardson’s Theorem

Theorem 12.6. Richardson’s Theorem (continued 2)

Proof (continued). Since S2 is a kernel in D2, then each vertex in S2 is
dominated by some vertex in
V (D2)−V (S2) = V (D)− (V1 ∪V2)−V (S2). By choice each vertex in S1

by some vertex in V2. So each vertex of S1 ∪ S2 is dominated by some
vertex in

(V (D)− (V1 ∪ V2)− V (S2)) ∪ V2 = V (D)− V1 − V (S2)

= V (D)− V (D1)− V (S2)

⊂ V (D)− V (S1)− V (S2)

since V (S1) ⊂ V (D1)

= V (D)− V (S1 ∪ S2)

and so S1 ∪ S2 is a kernel of D. Therefore the result holds for all V with n
vertices. By mathematical induction, the result holds for all digraphs D, as
claimed.
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