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Theorem 12.3. Turán’s Theorem.
Let G be a simple graph which contains no Kk , where k ≥ 2. Then
e(G ) ≤ e(Tk−1,n), with equality if and only if G ∼= Tk−1,n.

Proof. We give an induction proof on k. For k = 2, the hypothesis that
G contains no Kk implies that G has no edges, so the inequality holds; the
Turán graph T1,n is a “1-partite” with with n vertices and not edges, so
that the equality holds. For the induction hypothesis, suppose the claim
holds for all positive integers greater than or equal to 2 and less than k (so
we are taking k ≥ 3 now).

Let G be a simple graph which contains no Kk .
Choose a vertex x of G of maximum degree ∆, set X = N(x) (the set of
neighbors of x), and set Y = V \X . Then e(g) = e(X ) + e(X ,Y ) + e(Y )
(recall that e(X ) is the number of edges in G [X ] and e(X ,Y ) is the
number of edges in the bipartite graph G [X ,Y ]). Since G contains no Kk

be hypothesis, then G [X ] contains no Kk−1 (for, if it did, then
G [X ∪ {x}] = G [N(x) ∪ {x}] would contain a Kk).
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Theorem 12.3. Turán’s Theorem

Theorem 12.3. Turán’s Theorem (continued)

Proof (continued). So by the induction hypothesis, e(X ) ≤ e(Tk−2,∆)
with equality if and only if G [x ] ∼= Tk−2,∆. Since Y = V \ X then each
edge of G incident with a vertex of Y belongs to either E (X ,Y ) (when
the edge is also incident to a vertex in X ) or E (Y ) (when both ends of the
edge are in Y = V \ X ), then e(X ,Y ) + e(Y ) ≤ ∆(n −∆) with equality
if and only if Y is a stable set all members of which have degree ∆ (by
Exercise 12.2.A). So

e(G ) = e(X ) + e(X ,Y ) + e(Y ) ≤ e(Tk−2,∆) + ∆(n −∆),

and e(G ) ≤ e(H) where H is the graph obtained from a copy of Tk−2,∆

(on ∆ vertices) by adding a stable set of n −∆ vertices and joining each
vertex of this set to each vertex of Tk−2,∆. Observe that H is then a
complete (k − 1)-partite graph on (n −∆) + ∆ = n vertices. By Exercise
1.1.11(a), e(H) ≤ e(Tk−1,n) with equality if and only if H ∼= Tk−1,n.
Therefore e(G ) ≤ e(H) ≤ e(Tk−1,n) with equality if and only if
G ∼= H ∼= Tk−1,n, as claimed.
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Theorem 12.4. Let S be a finite set of diameter one in the plane. Then
the number of pairs of points of S whose distance is greater than 1/

√
2 is

at most bn2/3c, where n = |S |. Moreover, for each n ≥ 2, there is a set of
n points of diameter one in which exactly bn2/3c pairs of points are at
distance greater than 1/

√
2.

Proof. Let S = {x1, x2, . . . , xn} be a finite set of points in the plane with
diameter 1. Consider the graph G with vertex set S and edge set
{xixj | d(xi , xj) > 1/

√
2}, where d(xi , xj) denotes the Euclidean distance

between xi and xj as points in the Cartesian plane. We’ll show that G
cannot contain a copy of K4. The convex hull determined by four points is
either a line, a triangle, or a quadrilateral (see Figure 12.9).
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Theorem 12.4

Theorem 12.4 (continued 1)

Proof (continued).

In each case, some three of the points, say xixjxk , form an angle x̂ixjxk of
at least 90◦. If d(xi , xj) > 1/

√
2 and d(xj , xk) > 1/

√
2, then by the Law

of Cosines (since 90◦ ≤ x̂ixjxk ≤ 180◦)

(d(xi , xk))2 = (d(xi , xj))
2 + (d(xj , xk))2 − 2d(xi , xj)d(xj , xk) cos(x̂ixjxk)

≥ (d(xi , xj))
2 + (d(xj , xk))2 > (1/

√
2)2 + (1/

√
2)2 = 1.

But this is a contradiction to the fact that the diameter of S is at most 1.
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Theorem 12.4 (continued 2)

Proof (continued). So for any four points in S , at least two of the points
cannot be adjacent in G (the points xi and xk , as labeled in Figure 12.9).
Hence, G cannot contain a copy of K2. By Turán’s Theorem (Theorem
12.7) with k = 4, we have that e(G ) ≤ e(T3,n). By Exercise 1.1.11,
e(T3,n) = bn2/3c so that e(G ) ≤ bn2/3c, as claimed.

Next, we construct a set such that
exactly bn2/3c pairs of
points are at a distance greater than
1/
√

2 apart. Choose r such that
0 < r < (1− 1/

√
2)/4. Consider three

circles of radius r whose centers are
1− 2r from one another. See
Figure 12.10.

Figure 12.10
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Theorem 12.4 (continued 3)

Theorem 12.4. Let S be a finite set of diameter one in the plane. Then
the number of pairs of points of S whose distance is greater than 1/

√
2 is

at most bn2/3c, where n = |S |. Moreover, for each n ≥ 2, there is a set of
n points of diameter one in which exactly bn2/3c pairs of points are at
distance greater than 1/

√
2.

Proof (continued). Set p = bn/3c. Place points x1, x2, . . . , xp in one
circle, points xp+1, xp+2, . . . , x2p in another, and points
x2p+1, x2p+2, . . . , xn in the third circle. So so in such a way that
d(x1, xn) = 1 and x2, x3, . . . , xn−1 are in the interiors of their circles.Notice
from the geometry that any two points are at most 1 unit apart (and the
diameter of the set of points is 1). Two points in different circles are at a
distance greater than 1− 4r > 1− (1− 1/

√
2) = 1/

√
2 apart (and only if

the points are in different circles). There are
p2 + 2p(n − 2p) = bn/3c2 + 2bn/3c(dn/3e) = bn2/3c pairs of points at
least 1/

√
2 apart, and hence bn2/3c edges of G , as claimed.
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