Graph Theory

Chapter 12. Stable Sets and Cliques

12.2. Turán's Theorem—Proofs of Theorems

Table of contents

(1) Theorem 12.3. Turán's Theorem
(2) Theorem 12.4

Theorem 12.3. Turán's Theorem

Theorem 12.3. Turán's Theorem.
Let G be a simple graph which contains no K_{k}, where $k \geq 2$. Then $e(G) \leq e\left(T_{k-1, n}\right)$, with equality if and only if $G \cong T_{k-1, n}$.

Proof. We give an induction proof on k. For $k=2$, the hypothesis that G contains no K_{k} implies that G has no edges, so the inequality holds; the Turán graph $T_{1, n}$ is a "1-partite" with with n vertices and not edges, so that the equality holds. For the induction hypothesis, suppose the claim holds for all positive integers greater than or equal to 2 and less than k (so we are taking $k \geq 3$ now).

Theorem 12.3. Turán's Theorem

Theorem 12.3. Turán's Theorem.

Let G be a simple graph which contains no K_{k}, where $k \geq 2$. Then $e(G) \leq e\left(T_{k-1, n}\right)$, with equality if and only if $G \cong T_{k-1, n}$.

Proof. We give an induction proof on k. For $k=2$, the hypothesis that G contains no K_{k} implies that G has no edges, so the inequality holds; the Turán graph $T_{1, n}$ is a "1-partite" with with n vertices and not edges, so that the equality holds. For the induction hypothesis, suppose the claim holds for all positive integers greater than or equal to 2 and less than k (so we are taking $k \geq 3$ now). Let G be a simple graph which contains no K_{k} Choose a vertex x of G of maximum degree Δ, set $X=N(x)$ (the set of neighbors of x), and set $Y=V \backslash X$. Then $e(g)=e(X)+e(X, Y)+e(Y)$ (recall that $e(X)$ is the number of edges in $G[X]$ and $e(X, Y)$ is the number of edges in the bipartite graph $G[X, Y]$). Since G contains no K_{k} be hypothesis, then $G[X]$ contains no K_{k-1} (for, if it did, then $G[X \cup\{x\}]=G[N(x) \cup\{x\}]$ would contain a $\left.K_{k}\right)$

Theorem 12.3. Turán's Theorem

Theorem 12.3. Turán's Theorem.

Let G be a simple graph which contains no K_{k}, where $k \geq 2$. Then $e(G) \leq e\left(T_{k-1, n}\right)$, with equality if and only if $G \cong T_{k-1, n}$.

Proof. We give an induction proof on k. For $k=2$, the hypothesis that G contains no K_{k} implies that G has no edges, so the inequality holds; the Turán graph $T_{1, n}$ is a "1-partite" with with n vertices and not edges, so that the equality holds. For the induction hypothesis, suppose the claim holds for all positive integers greater than or equal to 2 and less than k (so we are taking $k \geq 3$ now). Let G be a simple graph which contains no K_{k}. Choose a vertex x of G of maximum degree Δ, set $X=N(x)$ (the set of neighbors of x), and set $Y=V \backslash X$. Then $e(g)=e(X)+e(X, Y)+e(Y)$ (recall that $e(X)$ is the number of edges in $G[X]$ and $e(X, Y)$ is the number of edges in the bipartite graph $G[X, Y]$). Since G contains no K_{k} be hypothesis, then $G[X]$ contains no K_{k-1} (for, if it did, then $G[X \cup\{x\}]=G[N(x) \cup\{x\}]$ would contain a $\left.K_{k}\right)$.

Theorem 12.3. Turán's Theorem (continued)

Proof (continued). So by the induction hypothesis, $e(X) \leq e\left(T_{k-2, \Delta}\right)$ with equality if and only if $G[x] \cong T_{k-2, \Delta}$. Since $Y=V \backslash X$ then each edge of G incident with a vertex of Y belongs to either $E(X, Y)$ (when the edge is also incident to a vertex in X) or $E(Y)$ (when both ends of the edge are in $Y=V \backslash X)$, then $e(X, Y)+e(Y) \leq \Delta(n-\Delta)$ with equality if and only if Y is a stable set all members of which have degree Δ (by Exercise 12.2.A).

$$
e(G)=e(X)+e(X, Y)+e(Y) \leq e\left(T_{k-2, \Delta}\right)+\Delta(n-\Delta),
$$

and $e(G) \leq e(H)$ where H is the graph obtained from a copy of $T_{k-2, \Delta}$ (on Δ vertices) by adding a stable set of $n-\Delta$ vertices and joining each vertex of this set to each vertex of $T_{k-2, \Delta}$. Observe that H is then a complete $(k-1)$-partite graph on $(n-\Delta)+\Delta=n$ vertices. By Exercise 1.1.11(a), $e(H) \leq e\left(T_{k-1, n}\right)$ with equality if and only if $H \cong T_{k-1, n}$. Therefore $e(G) \leq e(H) \leq e\left(T_{k-1, n}\right)$ with equality if and only if $G \cong H \cong T_{k-1, n}$, as claimed.

Theorem 12.3. Turán's Theorem (continued)

Proof (continued). So by the induction hypothesis, $e(X) \leq e\left(T_{k-2, \Delta}\right)$ with equality if and only if $G[x] \cong T_{k-2, \Delta}$. Since $Y=V \backslash X$ then each edge of G incident with a vertex of Y belongs to either $E(X, Y)$ (when the edge is also incident to a vertex in X) or $E(Y)$ (when both ends of the edge are in $Y=V \backslash X)$, then $e(X, Y)+e(Y) \leq \Delta(n-\Delta)$ with equality if and only if Y is a stable set all members of which have degree Δ (by Exercise 12.2.A). So

$$
e(G)=e(X)+e(X, Y)+e(Y) \leq e\left(T_{k-2, \Delta}\right)+\Delta(n-\Delta),
$$

and $e(G) \leq e(H)$ where H is the graph obtained from a copy of $T_{k-2, \Delta}$ (on Δ vertices) by adding a stable set of $n-\Delta$ vertices and joining each vertex of this set to each vertex of $T_{k-2, \Delta}$. Observe that H is then a complete $(k-1)$-partite graph on $(n-\Delta)+\Delta=n$ vertices. By Exercise 1.1.11(a), $e(H) \leq e\left(T_{k-1, n}\right)$ with equality if and only if $H \cong T_{k-1, n}$. Therefore $e(G) \leq e(H) \leq e\left(T_{k-1, n}\right)$ with equality if and only if $G \cong H \cong T_{k-1, n}$, as claimed.

Theorem 12.4

Theorem 12.4. Let S be a finite set of diameter one in the plane. Then the number of pairs of points of S whose distance is greater than $1 / \sqrt{2}$ is at most $\left\lfloor n^{2} / 3\right\rfloor$, where $n=|S|$. Moreover, for each $n \geq 2$, there is a set of n points of diameter one in which exactly $\left\lfloor n^{2} / 3\right\rfloor$ pairs of points are at distance greater than $1 / \sqrt{2}$.

Proof. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite set of points in the plane with diameter 1. Consider the graph G with vertex set S and edge set $\left\{x_{i} x_{j} \mid d\left(x_{i}, x_{j}\right)>1 / \sqrt{2}\right\}$, where $d\left(x_{i}, x_{j}\right)$ denotes the Euclidean distance between x_{i} and x_{j} as points in the Cartesian plane. We'll show that G cannot contain a copy of K_{4}. The convex hull determined by four points is either a line, a triangle, or a quadrilateral (see Figure 12.9).

Theorem 12.4

Theorem 12.4. Let S be a finite set of diameter one in the plane. Then the number of pairs of points of S whose distance is greater than $1 / \sqrt{2}$ is at most $\left\lfloor n^{2} / 3\right\rfloor$, where $n=|S|$. Moreover, for each $n \geq 2$, there is a set of n points of diameter one in which exactly $\left\lfloor n^{2} / 3\right\rfloor$ pairs of points are at distance greater than $1 / \sqrt{2}$.

Proof. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite set of points in the plane with diameter 1. Consider the graph G with vertex set S and edge set $\left\{x_{i} x_{j} \mid d\left(x_{i}, x_{j}\right)>1 / \sqrt{2}\right\}$, where $d\left(x_{i}, x_{j}\right)$ denotes the Euclidean distance between x_{i} and x_{j} as points in the Cartesian plane. We'll show that G cannot contain a copy of K_{4}. The convex hull determined by four points is either a line, a triangle, or a quadrilateral (see Figure 12.9).

Theorem 12.4 (continued 1)

Proof (continued).

(a)

In each case, some three of the points, say $x_{i} x_{j} x_{k}$, form an angle $\widehat{x_{i} x_{j} x_{k}}$ of at least 90°. If $d\left(x_{i}, x_{j}\right)>1 / \sqrt{2}$ and $d\left(x_{j}, x_{k}\right)>1 / \sqrt{2}$, then by the Law of Cosines (since $90^{\circ} \leq \widehat{x_{i} x_{j} x_{k}} \leq 180^{\circ}$)

$$
\begin{gathered}
\left(d\left(x_{i}, x_{k}\right)\right)^{2}=\left(d\left(x_{i}, x_{j}\right)\right)^{2}+\left(d\left(x_{j}, x_{k}\right)\right)^{2}-2 d\left(x_{i}, x_{j}\right) d\left(x_{j}, x_{k}\right) \cos \left(\widehat{x_{i} x_{j} x_{k}}\right) \\
\geq\left(d\left(x_{i}, x_{j}\right)\right)^{2}+\left(d\left(x_{j}, x_{k}\right)\right)^{2}>(1 / \sqrt{2})^{2}+(1 / \sqrt{2})^{2}=1
\end{gathered}
$$

But this is a contradiction to the fact that the diameter of S is at most 1.

Theorem 12.4 (continued 2)

Proof (continued). So for any four points in S, at least two of the points cannot be adjacent in G (the points x_{i} and x_{k}, as labeled in Figure 12.9). Hence, G cannot contain a copy of K_{2}. By Turán's Theorem (Theorem 12.7) with $k=4$, we have that $e(G) \leq e\left(T_{3, n}\right)$. By Exercise 1.1.11, $e\left(T_{3, n}\right)=\left\lfloor n^{2} / 3\right\rfloor$ so that $e(G) \leq\left\lfloor n^{2} / 3\right\rfloor$, as claimed.

Theorem 12.4 (continued 2)

Proof (continued). So for any four points in S, at least two of the points cannot be adjacent in G (the points x_{i} and x_{k}, as labeled in Figure 12.9). Hence, G cannot contain a copy of K_{2}. By Turán's Theorem (Theorem 12.7) with $k=4$, we have that $e(G) \leq e\left(T_{3, n}\right)$. By Exercise 1.1.11, $e\left(T_{3, n}\right)=\left\lfloor n^{2} / 3\right\rfloor$ so that $e(G) \leq\left\lfloor n^{2} / 3\right\rfloor$, as claimed.

Next, we construct a set such that
exactly $\left\lfloor n^{2} / 3\right\rfloor$ pairs of
points are at a distance greater than $1 / \sqrt{2}$ apart. Choose r such that
$0<r<(1-1 / \sqrt{ } 2) / 4$. Consider three circles of radius r whose centers are $1-2 r$ from one another. See Figure 12.10

Figure 12.10

Theorem 12.4 (continued 2)

Proof (continued). So for any four points in S, at least two of the points cannot be adjacent in G (the points x_{i} and x_{k}, as labeled in Figure 12.9). Hence, G cannot contain a copy of K_{2}. By Turán's Theorem (Theorem 12.7) with $k=4$, we have that $e(G) \leq e\left(T_{3, n}\right)$. By Exercise 1.1.11, $e\left(T_{3, n}\right)=\left\lfloor n^{2} / 3\right\rfloor$ so that $e(G) \leq\left\lfloor n^{2} / 3\right\rfloor$, as claimed.

Next, we construct a set such that exactly $\left\lfloor n^{2} / 3\right\rfloor$ pairs of points are at a distance greater than $1 / \sqrt{2}$ apart. Choose r such that $0<r<(1-1 / \sqrt{2}) / 4$. Consider three circles of radius r whose centers are $1-2 r$ from one another. See Figure 12.10.

Figure 12.10

Theorem 12.4 (continued 3)

Theorem 12.4. Let S be a finite set of diameter one in the plane. Then the number of pairs of points of S whose distance is greater than $1 / \sqrt{2}$ is at most $\left\lfloor n^{2} / 3\right\rfloor$, where $n=|S|$. Moreover, for each $n \geq 2$, there is a set of n points of diameter one in which exactly $\left\lfloor n^{2} / 3\right\rfloor$ pairs of points are at distance greater than $1 / \sqrt{2}$.

Proof (continued). Set $p=\lfloor n / 3\rfloor$. Place points $x_{1}, x_{2}, \ldots, x_{p}$ in one circle, points $x_{p+1}, x_{p+2}, \ldots, x_{2 p}$ in another, and points $x_{2 p+1}, x_{2 p+2}, \ldots, x_{n}$ in the third circle. So so in such a way that $d\left(x_{1}, x_{n}\right)=1$ and $x_{2}, x_{3}, \ldots, x_{n-1}$ are in the interiors of their circles. Notice from the geometry that any two points are at most 1 unit apart (and the diameter of the set of points is 1). Two points in different circles are at a distance greater than $1-4 r>1-(1-1 / \sqrt{2})=1 / \sqrt{2}$ apart (and only if the points are in different circles). There are $p^{2}+2 p(n-2 p)=\lfloor n / 3\rfloor^{2}+2\lfloor n / 3\rfloor(\lceil n / 3\rceil)=\left\lfloor n^{2} / 3\right\rfloor$ pairs of points at least $1 / \sqrt{2}$ apart, and hence $\left\lfloor n^{2} / 3\right\rfloor$ edges of G, as claimed.

