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Theorem 12.9

Theorem 12.9

Theorem 12.9. For any two integers k ≥ 2 and ` ≥ 2,

r(k, `) ≤ r(k, `− 1) + r(k − 1, `).

Furthermore, if r(k, `− 1) and f (k − 1, `) are both even, strict inequality
holds in the inequality.

Proof. Let G be a graph on r(k, `− 1) + r(k − 1, `) vertices and let
v ∈ V . We consider two cases:

1. Vertex v is nonadjacent to a set S of at least r(k, `− 1)
vertices.

2. Vertex v is adjacent to a set T of at least r(k − 1, `) vertices.

Since G has r(k, `− 1) + r(k − 1, `) vertices, then there are
r(k, `− 1) + r(k − 1, `)− 1 vertices in G other than vertex v . So the
number of vertices to which v is nonadjacent plus the number of vertices
to which v is adjacent is equal to r(k, `− 1) + r(k − 1, `)− 1; hence,
either Case 1 or Case 2 must hold.
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Theorem 12.9

Theorem 12.9 (continued 1)

Proof (continued). In Case 1, the induced subgraph G [S ] of G contains
either a clique of k vertices or a stable set of `− 1 vertices. Therefore,
G [S ∪ {v}] contains either a clique of k vertices (since G [S ] does) or a
stable set of ` vertices (the stable set of `− 1 vertices in G [S ] along with
vertex v which is not adjacent to any vertices of S). Since G [S ∪ {v}] is a
subgraph of G , then G also contains these sets. In Case 2, the induced
subgraph G [T ] contains either a clique of k − 1 vertices or a stable set of
` vertices. Therefore, G [T ∪ {v}] contains either a clique of k vertices
(the clique of k − 1 vertices in G [T ] along with vertex v which is adjacent
to all vertices of T ) or a stable set of ` vertices (since G [T ] does). Since
G [T ∪ {v}] is a subgraph of G , then G also contains these sets. This
proves the inequality.
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Theorem 12.9

Theorem 12.9 (continued 2)

Proof (continued). Now suppose that r(k, `− 1) and r(k − 1, `) are
both even, and let G ′ be a graph on r(k, `− 1) + r(k − 1, `)− 1 vertices.
So G ′ has an odd number vertices, by Corollary 1.2 there is some vertex v ′

of G ′ of even degree. In particular, v ′ cannot be adjacent to precisely
r(k − 1, `)− 1 vertices. So v ′ must be adjacent to at least vertices
r(k − 1, `) vertices (in which Case 2 above holds) or v ′ must be
nonadjacent to at least r(k, `− 1) vertices (in which Case 1 above holds).
That is, in graph G ′ either Case 1 or Case 2 hold, and hence, as shown
above, G ′ either contains a clique on k vertices or a stable set on `
vertices. So we have by the inequality established above (but with
r(k − 1, `) there replaced with r(k − 1, `)− 1 here) gives

r(k, `) ≤ r(k, `− 1) + r(k − 1, `)− 1 < r(k, `− 1) + r(k − 1, `),

as claimed.
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Theorem 12.10

Theorem 12.10

Theorem 12.10. For all positive integers k and `, r(k, `) ≤
(

k + `− 2

k − 1

)
.

Proof. We give an inductive proof on the sum k + `. If k + ` ≤ 5 then
either k or ` must be less than 3. By Note 12.A, for k + ` ≤ 5 we have

r(1, `) = 1 ≤
(

k + `− 2

k − 1

)
since every combination is at least 1,

r(k, 2) = k =

(
k + `− 2

k − 1

)
=

(
k

k − 1

)
= k, and similarly, by symmetry,

r(k, 1) and r(2, `) are also bounded as claimed. So we take k + ` ≤ 5 as
the base case(s).

Let m and n be positive integers and for the induction hypothesis suppose
the theorem is valid for all integers k and ` such that 5 ≤ k + ` ≤ m + n.
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Theorem 12.10

Theorem 12.10 (continued)

Theorem 12.10. For all positive integers k and `, r(k, `) ≤
(

k + `− 2

k − 1

)
.

Proof (continued). Then

r(m, n) ≤ r(m, n − 1) + r(m − 1, n) by Theorem 12.9

≤
(

m + n − 3

m − 1

)
+

(
m + n − 3

m − 2

)
by the induction hypothesis

=
(m + n − 3)!

(n − 2)!(m − 1)!
+

(m + n − 3)!

(n − 1)!(m − 2)!

=
(m + n − 3)!((n − 1) + (m − 1))

(n − 1)!(m − 1)!
=

(m + n − 2)!

(n − 1)!(m − 1)!

=

(
m + n − 2

m − 1

)
.

So the induction step is established. Therefore, by mathematical
induction, the claim holds for all positive integers k and `.
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Theorem 12.12

Theorem 12.12

Theorem 12.12. For all positive integers k, r(k, k) ≥ 2k/2.

Proof. By Note 12.A, r(1, 1) = 1 and r(2, 2) = 2, so we just need to
consider k ≥ 3. Let Gn be the set of all simple graphs with vertex set
{v1, v2, . . . , vn}. Let Gk

n be the set of these labeled simple graphs which

have a clique on k vertices. We have Gn| = 2(n
2) (since for any of the

(n
2

)
pairs of vertices may or may not be joined by an edge; see Note 1.2.B).

The number of graphs in Gn having a given set of k vertices as a clique is

2(n
2)−(k

2) (because there is 1 way to configure the edges in the clique, there

are 2(n−k
2 ) ways to assign edges to the n − k vertices that are NOT in the

clique, and there are 2(n−k)k ways to assign edges between the n − k
vertices not in the clique and the k vertices in the clique; this gives

1 · 2(n−k
2 ) · 2(n−k)k = 2(n2−n−k2+k)/2 = 2(n

2)−(k
2)

ways to choose edges that join two vertices where are on the other vertex
is not in the clique).
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Theorem 12.12

Theorem 12.12 (continued 1)

Theorem 12.12. For all positive integers k, r(k, k) ≥ 2k/2.

Proof (continued). Because there are
(n
k

)
distinct k-element subsets of

{v1, v2, . . . , vn} we have |Gk
n | ≤

(
n

k

)
2(n

2)−(k
2). We pick up an inequality

here because there may be graphs in Gk
n which have more than one

k-clique in which case they are counted once on the left-hand-side by the
bound on the right-hand-side counts then more once. Therefore

|Gk
n |

|Gn|
≤

(n
k

)
2(n

2)−(k
2)

2(n
2)

=

(
n

k

)
2−(k

2)

=
n(n − 1) · · · (n − k + 1)

k!
2−(k

2) <
nk2−(k

2)

k!
.
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Theorem 12.12

Theorem 12.12 (continued 2)

Theorem 12.12. For all positive integers k, r(k, k) ≥ 2k/2.

Proof (continued). Suppose n < 2k/2. Then, since k ≥ 3,

|Gk
n |

|Gn|
<

nk2−(k
2)

k!
<

2k2/22−(k
2)

k!
=

2k/2

k!
<

1

2
.

That is, if n < 2k/2 then strictly fewer than half of the graphs in Gn contain
a stable set of k vertices. By considering complements, we similarly have
that strictly fewer than half of the graphs in Gn contain a stable set of k
vertices. Therefore some graph in Gn contains neither a clique of k vertices
nor a stable set of k vertices. That is, if n < 2k/2 then there aren’t
necessarily enough vertices in a graph on n vertices to guarantee that the
graph either contains a clique on k vertices or a stable set on k vertices.
Hence, n < r(k, k) and so we must have r(k, k) ≥ 2k/2 as claimed.
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Theorem 12.15. Schur’s Theorem

Theorem 12.15. Schur’s Theorem

Theorem 12.15. Schur’s Theorem.
Let {A1,A2, . . . ,An} be a partition of the set of integers {1, 2, . . . , rn} into
n subsets. Then some Ai contains three integers x , y , and z satisfying the
equation z .

Proof. Consider the complete graph whose vertex set is {1, 2, . . . , rn}.
Color the edges of this graph with colors 1, 2, . . . , n by the rule that the
edge uv is assigned color i if |u − v | ∈ Ai . By the definition of this general
Ramsey number rn = r(t1, t2, . . . , tn) = r(3, 3, . . . , 3) we know that some
Aj contains a K3; that is, there are three vertices a, b, c such that edges
ab, bc , and ac all have the same color j . Suppose, without loss of
generality, that a > b > c . Let x = a − b, y = b − c , and z = a − c .
Then, since ab, bc , ac are color j , then x , y , z ∈ Aj . Also,
x + y = (a − b) + (b − c) = a − c = z , as claimed.
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