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Theorem 12.9

Theorem 12.9. For any two integers k > 2 and ¢ > 2,
r(k,0) <r(k,£—1)+r(k—1,0).

Furthermore, if r(k,¢ — 1) and f(k — 1,¢) are both even, strict inequality
holds in the inequality.
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Theorem 12.9

Theorem 12.9. For any two integers k > 2 and ¢ > 2,
r(k,0) <r(k,£—1)+r(k—1,0).

Furthermore, if r(k,¢ — 1) and f(k — 1,¢) are both even, strict inequality
holds in the inequality.
Proof. Let G be a graph on r(k,¢ — 1)+ r(k — 1,¢) vertices and let
v € V. We consider two cases:

1. Vertex v is nonadjacent to a set S of at least r(k,¢ — 1)

vertices.

2. Vertex v is adjacent to a set T of at least r(k — 1, ¢) vertices.
Since G has r(k,¢ — 1)+ r(k — 1,¢) vertices, then there are
r(k,0 —1) + r(k —1,£) — 1 vertices in G other than vertex v. So the
number of vertices to which v is nonadjacent plus the number of vertices
to which v is adjacent is equal to r(k,¢ — 1) 4+ r(k — 1,¢) — 1; hence,
either Case 1 or Case 2 must hold.
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Theorem 12.9 (continued 1)

Proof (continued). In Case 1, the induced subgraph G[S] of G contains
either a clique of k vertices or a stable set of £ — 1 vertices. Therefore,
G[S U {v}] contains either a clique of k vertices (since G[S] does) or a
stable set of £ vertices (the stable set of £ — 1 vertices in G[S] along with
vertex v which is not adjacent to any vertices of S). Since G[SU {v}]is a
subgraph of G, then G also contains these sets.
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Theorem 12.9 (continued 1)

Proof (continued). In Case 1, the induced subgraph G[S] of G contains
either a clique of k vertices or a stable set of ¢/ — 1 vertices. Therefore,
G[S U {v}] contains either a clique of k vertices (since G[S] does) or a
stable set of £ vertices (the stable set of £ — 1 vertices in G[S] along with
vertex v which is not adjacent to any vertices of S). Since G[SU {v}]is a
subgraph of G, then G also contains these sets. In Case 2, the induced
subgraph G[T] contains either a clique of k — 1 vertices or a stable set of
¢ vertices. Therefore, G[T U {v}] contains either a clique of k vertices
(the clique of k — 1 vertices in G[T] along with vertex v which is adjacent
to all vertices of T) or a stable set of ¢ vertices (since G[T] does). Since
G[T U{v}] is a subgraph of G, then G also contains these sets. This
proves the inequality.
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Theorem 12.9 (continued 2)

Proof (continued). Now suppose that r(k,¢ — 1) and r(k — 1,¢) are
both even, and let G’ be a graph on r(k,¢ — 1)+ r(k —1,¢) — 1 vertices.
So G’ has an odd number vertices, by Corollary 1.2 there is some vertex v/
of G’ of even degree. In particular, v/ cannot be adjacent to precisely

r(k —1,¢) — 1 vertices. So v/ must be adjacent to at least vertices

r(k —1,¢) vertices (in which Case 2 above holds) or v/ must be
nonadjacent to at least r(k,¢ — 1) vertices (in which Case 1 above holds).
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Theorem 12.9 (continued 2)

Proof (continued). Now suppose that r(k,¢ — 1) and r(k — 1,¢) are
both even, and let G’ be a graph on r(k,¢ — 1)+ r(k —1,¢) — 1 vertices.
So G’ has an odd number vertices, by Corollary 1.2 there is some vertex v
of G’ of even degree. In particular, v/ cannot be adjacent to precisely

r(k —1,¢) — 1 vertices. So v/ must be adjacent to at least vertices

r(k —1,¢) vertices (in which Case 2 above holds) or v/ must be
nonadjacent to at least r(k,¢ — 1) vertices (in which Case 1 above holds).
That is, in graph G’ either Case 1 or Case 2 hold, and hence, as shown
above, G’ either contains a clique on k vertices or a stable set on £
vertices. So we have by the inequality established above (but with

r(k — 1,¢) there replaced with r(k — 1,¢) — 1 here) gives

/

r(k,0) <r(k,0—1)+r(k—1,0)—-1<r(k,—1)+r(k—1,0),
as claimed. OJ
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Theorem 12.10

k+£0—2
Theorem 12.10. For all positive integers k and ¢, r(k,t) < < :_ 1 >
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Theorem 12.10

Theorem 12.10

k—1
Proof. We give an inductive proof on the sum k + ¢. If k + ¢ <5 then
either k or £ must be less than 3. By Note 12.A, for k + £ < 5 we have

k+10¢—2
r(l,)=1< : 1 since every combination is at least 1,

Theorem 12.10. For all positive integers k and ¢, r(k,{) < <k +i- 2>‘

k+¢—2 k .
r(k,2) =k = K1 ) = (k B 1> = k, and similarly, by symmetry,

r(k,1) and r(2,¢) are also bounded as claimed. So we take k 4+ ¢ <5 as
the base case(s).
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Theorem 12.10

k—1

Proof. We give an inductive proof on the sum k + ¢. If k + ¢ <5 then
either k or £ must be less than 3. By Note 12.A, for k + £ < 5 we have

L0 =1< k:ff

k+0—-2 k
r(k,2) =k = < * ) = ( > = k, and similarly, by symmetry,

Theorem 12.10. For all positive integers k and ¢, r(k,{) < <k +i- 2>‘

since every combination is at least 1,

k—1 k—1
r(k,1) and r(2,¢) are also bounded as claimed. So we take k 4+ ¢ <5 as
the base case(s).

Let m and n be positive integers and for the induction hypothesis suppose
the theorem is valid for all integers k and ¢ such that 5 < k4+ ¢ < m+ n.
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Theorem 12.10 (continued)

k+£0-2
Theorem 12.10. For all positive integers k and ¢, r(k,{) < ( * )

k—1
Proof (continued). Then

r(m,n) < r(m,n—1)4 r(m—1,n) by Theorem 12.9
m,;l; n- > <m;j; 3) by the induction hypothesis
(m+n—3)! N (m+n—3)!
(n—2) (m-1)!  (n—1){(m—2)!
(m+n=3)((n—-1)+(m—-1)) _ (m+n—2)!
(n—1)!(m—1)! (n—1)!(m-1)!

_ m+n-—2

a m—-1 )
So the induction step is established. Therefore, by mathematical
induction, the claim holds for all positive integers k and /. O
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Theorem 12.12

Theorem 12.12. For all positive integers k, r(k, k) > 2k/2.
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Theorem 12.12

Theorem 12.12. For all positive integers k, r(k, k) > 2k/2.

Proof. By Note 12.A, r(1,1) =1 and r(2,2) = 2, so we just need to
consider k > 3. Let G, be the set of all simple graphs with vertex set

{vi,vo,...,v,}. Let GX be the set of these labeled simple graphs which
have a clique on k vertices. We have G,| = 2(2) (since for any of the (g)

pairs of vertices may or may not be joined by an edge; see Note 1.2.B).
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Theorem 12.12

Theorem 12.12. For all positive integers k, r(k, k) > 2k/2.

Proof. By Note 12.A, r(1,1) =1 and r(2,2) = 2, so we just need to
consider k > 3. Let G, be the set of all simple graphs with vertex set
{vi,vo,...,v,}. Let GX be the set of these labeled simple graphs which
have a clique on k vertices. We have G,| = 2(5) (since for any of the (g)
pairs of vertices may or may not be joined by an edge; see Note 1.2.B).
The number of graphs in G, having a given set of k vertices as a clique is

n k
2(3)-(5) (because there is 1 way to configure the edges in the clique, there
n—k
are 2("2") ways to assign edges to the n — k vertices that are NOT in the
clique, and there are 2("=kK)k ways to assign edges between the n — k

vertices not in the clique and the k vertices in the clique; this gives
1.2(72") L oln=K)k — o =n—k>+k)/2 _ 9(3)=(3)

ways to choose edges that join two vertices where are on the other vertex
is not in the clique).
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Theorem 12.12 (continued 1)

Theorem 12.12. For all positive integers k, r(k, k) > 2K/2.

Proof (continued). Because there are (}) distinct k-element subsets of

{v1,va,..., vn} we have \g,§| < <Z> 2(3)-(3). we pick up an inequality

here because there may be graphs in GX which have more than one
k-clique in which case they are counted once on the left-hand-side by the
bound on the right-hand-side counts then more once. Therefore

g8 _ (2070 my
Gl = 50 = (1)2

nn—1)---(n—k+1)__(« nk27(l2<)
— ( ) k!( )2 (2)< il .
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Theorem 12.12 (continued 2)

Theorem 12.12. For all positive integers k, r(k, k) > 2k/2.

Proof (continued). Suppose n < 2k/2 Then, since k > 3,

|GX| nko=(5)  ok?/20-(5) k2 4
Gl S K ST kT k72

That is, if n < 25/2 then strictly fewer than half of the graphs in G, contain
a stable set of k vertices. By considering complements, we similarly have
that strictly fewer than half of the graphs in G, contain a stable set of k
vertices.
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Theorem 12.12

Theorem 12.12 (continued 2)

Theorem 12.12. For all positive integers k, r(k, k) > 2k/2.

Proof (continued). Suppose n < 2k/2 Then, since k > 3,

|GX| nko=(5)  ok?/20-(5) k2 4
Gl S K ST kT k72

That is, if n < 25/2 then strictly fewer than half of the graphs in G, contain
a stable set of k vertices. By considering complements, we similarly have
that strictly fewer than half of the graphs in G, contain a stable set of k
vertices. Therefore some graph in G, contains neither a clique of k vertices
nor a stable set of k vertices. That is, if n < 2%/2 then there aren't
necessarily enough vertices in a graph on n vertices to guarantee that the
graph either contains a clique on k vertices or a stable set on k vertices.
Hence, n < r(k, k) and so we must have r(k, k) > 2%/ as claimed. O
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Theorem 12.15. Schur’s Theorem

Theorem 12.15. Schur's Theorem

Theorem 12.15. Schur’s Theorem.

Let {A1, Aa,...,Ap} be a partition of the set of integers {1,2,...,r,} into

n subsets. Then some A; contains three integers x, y, and z satisfying the
equation z.
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Theorem 12.15. Schur’'s Theorem

Theorem 12.15. Schur’s Theorem.

Let {A1, Aa,...,Ap} be a partition of the set of integers {1,2,...,r,} into
n subsets. Then some A; contains three integers x, y, and z satisfying the
equation z.

Proof. Consider the complete graph whose vertex set is {1,2,...,r,}.
Color the edges of this graph with colors 1,2, ..., n by the rule that the
edge uv is assigned color i if |u — v| € A;. By the definition of this general
Ramsey number r, = r(t1, t2,...,ty) = r(3,3,...,3) we know that some
A;j contains a K3; that is, there are three vertices a, b, ¢ such that edges
ab, bc, and ac all have the same color j. Suppose, without loss of
generality, that a > b >c. Let x=a—b,y=b—c,andz=a—c.
Then, since ab, bc, ac are color j, then x,y,z € A;. Also,
x+y=(a—b)+(b—c)=a—c=z, as claimed. O
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