Graph Theory

Chapter 12. Stable Sets and Cliques

12.3. Ramsey's Theorem—Proofs of Theorems

Table of contents

(1) Theorem 12.9
(2) Theorem 12.10
(3) Theorem 12.12
(4) Theorem 12.15. Schur's Theorem

Theorem 12.9

Theorem 12.9. For any two integers $k \geq 2$ and $\ell \geq 2$,

$$
r(k, \ell) \leq r(k, \ell-1)+r(k-1, \ell)
$$

Furthermore, if $r(k, \ell-1)$ and $f(k-1, \ell)$ are both even, strict inequality holds in the inequality.

Proof. Let G be a graph on $r(k, \ell-1)+r(k-1, \ell)$ vertices and let $v \in V$. We consider two cases:

1. Vertex v is nonadjacent to a set S of at least $r(k, \ell-1)$ vertices.
2. Vertex v is adjacent to a set T of at least $r(k-1, \ell)$ vertices.

Since G has $r(k, \ell-1)+r(k-1, \ell)$ vertices, then there are $r(k, \ell-1)+r(k-1, \ell)-1$ vertices in G other than vertex v. So the number of vertices to which v is nonadjacent plus the number of vertices to which v is adjacent is equal to $r(k, \ell-1)+r(k-1, \ell)-1$; hence, either Case 1 or Case 2 must hold.

Theorem 12.9

Theorem 12.9. For any two integers $k \geq 2$ and $\ell \geq 2$,

$$
r(k, \ell) \leq r(k, \ell-1)+r(k-1, \ell) .
$$

Furthermore, if $r(k, \ell-1)$ and $f(k-1, \ell)$ are both even, strict inequality holds in the inequality.

Proof. Let G be a graph on $r(k, \ell-1)+r(k-1, \ell)$ vertices and let $v \in V$. We consider two cases:

1. Vertex v is nonadjacent to a set S of at least $r(k, \ell-1)$ vertices.
2. Vertex v is adjacent to a set T of at least $r(k-1, \ell)$ vertices.

Since G has $r(k, \ell-1)+r(k-1, \ell)$ vertices, then there are $r(k, \ell-1)+r(k-1, \ell)-1$ vertices in G other than vertex v. So the number of vertices to which v is nonadjacent plus the number of vertices to which v is adjacent is equal to $r(k, \ell-1)+r(k-1, \ell)-1$; hence, either Case 1 or Case 2 must hold.

Theorem 12.9 (continued 1)

Proof (continued). In Case 1, the induced subgraph $G[S]$ of G contains either a clique of k vertices or a stable set of $\ell-1$ vertices. Therefore, $G[S \cup\{v\}]$ contains either a clique of k vertices (since $G[S]$ does) or a stable set of ℓ vertices (the stable set of $\ell-1$ vertices in $G[S]$ along with vertex v which is not adjacent to any vertices of S). Since $G[S \cup\{v\}]$ is a subgraph of G, then G also contains these sets. In Case 2, the induced subgraph $G[T]$ contains either a clique of $k-1$ vertices or a stable set of ℓ vertices. Therefore, $G[T \cup\{v\}]$ contains either a clique of k vertices (the clique of $k-1$ vertices in $G[T]$ along with vertex v which is adjacent to all vertices of T) or a stable set of ℓ vertices (since $G[T]$ does). Since $G[T \cup\{v\}]$ is a subgraph of G, then G also contains these sets. This proves the inequality.

Theorem 12.9 (continued 1)

Proof (continued). In Case 1, the induced subgraph $G[S]$ of G contains either a clique of k vertices or a stable set of $\ell-1$ vertices. Therefore, $G[S \cup\{v\}]$ contains either a clique of k vertices (since $G[S]$ does) or a stable set of ℓ vertices (the stable set of $\ell-1$ vertices in $G[S]$ along with vertex v which is not adjacent to any vertices of S). Since $G[S \cup\{v\}]$ is a subgraph of G, then G also contains these sets. In Case 2, the induced subgraph $G[T]$ contains either a clique of $k-1$ vertices or a stable set of ℓ vertices. Therefore, $G[T \cup\{v\}]$ contains either a clique of k vertices (the clique of $k-1$ vertices in $G[T]$ along with vertex v which is adjacent to all vertices of T) or a stable set of ℓ vertices (since $G[T]$ does). Since $G[T \cup\{v\}]$ is a subgraph of G, then G also contains these sets. This proves the inequality.

Theorem 12.9 (continued 2)

Proof (continued). Now suppose that $r(k, \ell-1)$ and $r(k-1, \ell)$ are both even, and let G^{\prime} be a graph on $r(k, \ell-1)+r(k-1, \ell)-1$ vertices. So G^{\prime} has an odd number vertices, by Corollary 1.2 there is some vertex v^{\prime} of G^{\prime} of even degree. In particular, v^{\prime} cannot be adjacent to precisely $r(k-1, \ell)-1$ vertices. So v^{\prime} must be adjacent to at least vertices $r(k-1, \ell)$ vertices (in which Case 2 above holds) or v^{\prime} must be nonadjacent to at least $r(k, \ell-1)$ vertices (in which Case 1 above holds). That is, in graph G^{\prime} either Case 1 or Case 2 hold, and hence, as shown above, G^{\prime} either contains a clique on k vertices or a stable set on ℓ vertices. So we have by the inequality established above (but with $r(k-1, \ell)$ there replaced with $r(k-1, \ell)-1$ here $)$ gives

Theorem 12.9 (continued 2)

Proof (continued). Now suppose that $r(k, \ell-1)$ and $r(k-1, \ell)$ are both even, and let G^{\prime} be a graph on $r(k, \ell-1)+r(k-1, \ell)-1$ vertices. So G^{\prime} has an odd number vertices, by Corollary 1.2 there is some vertex v^{\prime} of G^{\prime} of even degree. In particular, v^{\prime} cannot be adjacent to precisely $r(k-1, \ell)-1$ vertices. So v^{\prime} must be adjacent to at least vertices $r(k-1, \ell)$ vertices (in which Case 2 above holds) or v^{\prime} must be nonadjacent to at least $r(k, \ell-1)$ vertices (in which Case 1 above holds). That is, in graph G^{\prime} either Case 1 or Case 2 hold, and hence, as shown above, G^{\prime} either contains a clique on k vertices or a stable set on ℓ vertices. So we have by the inequality established above (but with $r(k-1, \ell)$ there replaced with $r(k-1, \ell)-1$ here) gives

$$
r(k, \ell) \leq r(k, \ell-1)+r(k-1, \ell)-1<r(k, \ell-1)+r(k-1, \ell),
$$

as claimed.

Theorem 12.10

Theorem 12.10. For all positive integers k and $\ell, r(k, \ell) \leq\binom{ k+\ell-2}{k-1}$.
Proof. We give an inductive proof on the sum $k+\ell$. If $k+\ell \leq 5$ then either k or ℓ must be less than 3. By Note 12.A, for $k+\ell \leq 5$ we have $r(1, \ell)=1 \leq\binom{ k+\ell-2}{k-1}$ since every combination is at least 1 ,
$r(k, 2)=k=\binom{k+\ell-2}{k-1}=\binom{k}{k-1}=k$, and similarly, by symmetry, $r(k, 1)$ and $r(2, \ell)$ are also bounded as claimed. So we take $k+\ell \leq 5$ as the base case(s).

Theorem 12.10

Theorem 12.10. For all positive integers k and $\ell, r(k, \ell) \leq\binom{ k+\ell-2}{k-1}$.
Proof. We give an inductive proof on the sum $k+\ell$. If $k+\ell \leq 5$ then either k or ℓ must be less than 3. By Note 12.A, for $k+\ell \leq 5$ we have $r(1, \ell)=1 \leq\binom{ k+\ell-2}{k-1}$ since every combination is at least 1 ,
$r(k, 2)=k=\binom{k+\ell-2}{k-1}=\binom{k}{k-1}=k$, and similarly, by symmetry, $r(k, 1)$ and $r(2, \ell)$ are also bounded as claimed. So we take $k+\ell \leq 5$ as the base case(s).

Let m and n be positive integers and for the induction hypothesis suppose the theorem is valid for all integers k and ℓ such that $5 \leq k+\ell \leq m+n$.

Theorem 12.10

Theorem 12.10. For all positive integers k and $\ell, r(k, \ell) \leq\binom{ k+\ell-2}{k-1}$.
Proof. We give an inductive proof on the sum $k+\ell$. If $k+\ell \leq 5$ then either k or ℓ must be less than 3. By Note 12.A, for $k+\ell \leq 5$ we have $r(1, \ell)=1 \leq\binom{ k+\ell-2}{k-1}$ since every combination is at least 1 ,
$r(k, 2)=k=\binom{k+\ell-2}{k-1}=\binom{k}{k-1}=k$, and similarly, by symmetry, $r(k, 1)$ and $r(2, \ell)$ are also bounded as claimed. So we take $k+\ell \leq 5$ as the base case(s).
Let m and n be positive integers and for the induction hypothesis suppose the theorem is valid for all integers k and ℓ such that $5 \leq k+\ell \leq m+n$.

Theorem 12.10 (continued)

Theorem 12.10. For all positive integers k and $\ell, r(k, \ell) \leq\binom{ k+\ell-2}{k-1}$. Proof (continued). Then

$$
\begin{aligned}
r(m, n) & \leq r(m, n-1)+r(m-1, n) \text { by Theorem } 12.9 \\
& \leq\binom{ m+n-3}{m-1}+\binom{m+n-3}{m-2} \text { by the induction hypothesis } \\
& =\frac{(m+n-3)!}{(n-2)!(m-1)!}+\frac{(m+n-3)!}{(n-1)!(m-2)!} \\
& =\frac{(m+n-3)!((n-1)+(m-1))}{(n-1)!(m-1)!}=\frac{(m+n-2)!}{(n-1)!(m-1)!} \\
& =\binom{m+n-2}{m-1} .
\end{aligned}
$$

So the induction step is established. Therefore, by mathematical induction, the claim holds for all positive integers k and ℓ.

Theorem 12.12

Theorem 12.12. For all positive integers $k, r(k, k) \geq 2^{k / 2}$.
Proof. By Note 12.A, $r(1,1)=1$ and $r(2,2)=2$, so we just need to consider $k \geq 3$. Let \mathcal{G}_{n} be the set of all simple graphs with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let \mathcal{G}_{n}^{k} be the set of these labeled simple graphs which have a clique on k vertices. We have $\mathcal{G}_{n} \left\lvert\,=2\binom{n}{2}\right.$ (since for any of the $\binom{n}{2}$ pairs of vertices may or may not be joined by an edge; see Note 1.2.B).

Theorem 12.12

Theorem 12.12. For all positive integers $k, r(k, k) \geq 2^{k / 2}$.
Proof. By Note 12.A, $r(1,1)=1$ and $r(2,2)=2$, so we just need to consider $k \geq 3$. Let \mathcal{G}_{n} be the set of all simple graphs with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let \mathcal{G}_{n}^{k} be the set of these labeled simple graphs which have a clique on k vertices. We have $\mathcal{G}_{n} \left\lvert\,=2\binom{n}{2}\right.$ (since for any of the $\binom{n}{2}$ pairs of vertices may or may not be joined by an edge; see Note 1.2.B).
The number of graphs in \mathcal{G}_{n} having a given set of k vertices as a clique is $2\binom{n}{2}-\binom{k}{2}$ (because there is 1 way to configure the edges in the clique, there are $2\binom{n-k}{2}$ ways to assign edges to the $n-k$ vertices that are NOT in the clique, and there are $2^{(n-k) k}$ ways to assign edges between the $n-k$ vertices not in the clique and the k vertices in the clique; this gives

$$
1 \cdot 2^{\binom{n-k}{2}} \cdot 2^{(n-k) k}=2^{\left(n^{2}-n-k^{2}+k\right) / 2}=2^{\binom{n}{2}-\binom{k}{2}}
$$

ways to choose edges that join two vertices where are on the other vertex is not in the clique).

Theorem 12.12

Theorem 12.12. For all positive integers $k, r(k, k) \geq 2^{k / 2}$.
Proof. By Note 12.A, $r(1,1)=1$ and $r(2,2)=2$, so we just need to consider $k \geq 3$. Let \mathcal{G}_{n} be the set of all simple graphs with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let \mathcal{G}_{n}^{k} be the set of these labeled simple graphs which have a clique on k vertices. We have $\mathcal{G}_{n} \left\lvert\,=2\binom{n}{2}\right.$ (since for any of the $\binom{n}{2}$ pairs of vertices may or may not be joined by an edge; see Note 1.2.B). The number of graphs in \mathcal{G}_{n} having a given set of k vertices as a clique is $2\binom{n}{2}-\binom{k}{2}$ (because there is 1 way to configure the edges in the clique, there are $2\binom{n-k}{2}$ ways to assign edges to the $n-k$ vertices that are NOT in the clique, and there are $2^{(n-k) k}$ ways to assign edges between the $n-k$ vertices not in the clique and the k vertices in the clique; this gives

$$
1 \cdot 2^{\binom{n-k}{2}} \cdot 2^{(n-k) k}=2^{\left(n^{2}-n-k^{2}+k\right) / 2}=2^{\binom{n}{2}-\binom{k}{2}}
$$

ways to choose edges that join two vertices where are on the other vertex is not in the clique).

Theorem 12.12 (continued 1)

Theorem 12.12. For all positive integers $k, r(k, k) \geq 2^{k / 2}$.
Proof (continued). Because there are $\binom{n}{k}$ distinct k-element subsets of
 here because there may be graphs in \mathcal{G}_{n}^{k} which have more than one k-clique in which case they are counted once on the left-hand-side by the bound on the right-hand-side counts then more once. Therefore

$$
\begin{gathered}
\frac{\left|\mathcal{G}_{n}^{k}\right|}{\left|\mathcal{G}_{n}\right|} \leq \frac{\binom{n}{k} 2^{\binom{n}{2}-\binom{k}{2}}}{2^{\binom{n}{2}}}=\binom{n}{k} 2^{-\binom{k}{2}} \\
=\frac{n(n-1) \cdots(n-k+1)}{k!} 2^{-\binom{k}{2}}<\frac{n^{k} 2^{-\binom{k}{2}}}{k!} .
\end{gathered}
$$

Theorem 12.12 (continued 2)

Theorem 12.12. For all positive integers $k, r(k, k) \geq 2^{k / 2}$.
Proof (continued). Suppose $n<2^{k / 2}$. Then, since $k \geq 3$,

$$
\frac{\left|\mathcal{G}_{n}^{k}\right|}{\left|\mathcal{G}_{n}\right|}<\frac{n^{k} 2^{-\binom{k}{2}}}{k!}<\frac{2^{k^{2} / 2} 2^{-\binom{k}{2}}}{k!}=\frac{2^{k / 2}}{k!}<\frac{1}{2} .
$$

That is, if $n<2^{k / 2}$ then strictly fewer than half of the graphs in \mathcal{G}_{n} contain a stable set of k vertices. By considering complements, we similarly have that strictly fewer than half of the graphs in \mathcal{G}_{n} contain a stable set of k vertices. Therefore some graph in \mathcal{G}_{n} contains neither a clique of k vertices nor a stable set of k vertices. That is, if $n<2^{k / 2}$ then there aren't necessarily enough vertices in a graph on n vertices to guarantee that the graph either contains a clique on k vertices or a stable set on k vertices. Hence, $n<r(k, k)$ and so we must have $r(k, k) \geq 2^{k / 2}$ as claimed.

Theorem 12.12 (continued 2)

Theorem 12.12. For all positive integers $k, r(k, k) \geq 2^{k / 2}$.
Proof (continued). Suppose $n<2^{k / 2}$. Then, since $k \geq 3$,

$$
\frac{\left|\mathcal{G}_{n}^{k}\right|}{\left|\mathcal{G}_{n}\right|}<\frac{n^{k} 2^{-\binom{k}{2}}}{k!}<\frac{2^{k^{2} / 2} 2^{-\binom{k}{2}}}{k!}=\frac{2^{k / 2}}{k!}<\frac{1}{2} .
$$

That is, if $n<2^{k / 2}$ then strictly fewer than half of the graphs in \mathcal{G}_{n} contain a stable set of k vertices. By considering complements, we similarly have that strictly fewer than half of the graphs in \mathcal{G}_{n} contain a stable set of k vertices. Therefore some graph in \mathcal{G}_{n} contains neither a clique of k vertices nor a stable set of k vertices. That is, if $n<2^{k / 2}$ then there aren't necessarily enough vertices in a graph on n vertices to guarantee that the graph either contains a clique on k vertices or a stable set on k vertices. Hence, $n<r(k, k)$ and so we must have $r(k, k) \geq 2^{k / 2}$ as claimed.

Theorem 12.15. Schur's Theorem

Theorem 12.15. Schur's Theorem.

Let $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a partition of the set of integers $\left\{1,2, \ldots, r_{n}\right\}$ into n subsets. Then some A_{i} contains three integers x, y, and z satisfying the equation z.

Proof. Consider the complete graph whose vertex set is $\left\{1,2, \ldots, r_{n}\right\}$ Color the edges of this graph with colors $1,2, \ldots, n$ by the rule that the edge $u v$ is assigned color i if $|u-v| \in A_{i}$. By the definition of this general Ramsey number $r_{n}=r\left(t_{1}, t_{2}, \ldots, t_{n}\right)=r(3,3, \ldots, 3)$ we know that some A_{j} contains a K_{3}; that is, there are three vertices a, b, c such that edges $a b, b c$, and $a c$ all have the same color j. Suppose, without loss of generality, that $a>b>c$. Let $x=a-b, y=b-c$, and $z=a-c$. Then, since $a b, b c, a c$ are color j, then $x, y, z \in A_{j}$. Also, $x+y=(a-b)+(b-c)=a-c=z$, as claimed.

Theorem 12.15. Schur's Theorem

Theorem 12.15. Schur's Theorem.

Let $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a partition of the set of integers $\left\{1,2, \ldots, r_{n}\right\}$ into n subsets. Then some A_{i} contains three integers x, y, and z satisfying the equation z.

Proof. Consider the complete graph whose vertex set is $\left\{1,2, \ldots, r_{n}\right\}$. Color the edges of this graph with colors $1,2, \ldots, n$ by the rule that the edge $u v$ is assigned color i if $|u-v| \in A_{i}$. By the definition of this general Ramsey number $r_{n}=r\left(t_{1}, t_{2}, \ldots, t_{n}\right)=r(3,3, \ldots, 3)$ we know that some A_{j} contains a K_{3}; that is, there are three vertices a, b, c such that edges $a b, b c$, and $a c$ all have the same color j. Suppose, without loss of generality, that $a>b>c$. Let $x=a-b, y=b-c$, and $z=a-c$. Then, since $a b, b c, a c$ are color j, then $x, y, z \in A_{j}$. Also, $x+y=(a-b)+(b-c)=a-c=z$, as claimed.

