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Lemma 13.1. The Crossing Lemma

Lemma 13.1

Lemma 13.1. The Crossing Lemma.

Let G be a simple graph with m ≥ 4n. Then cr(G ) ≥ 1

64

m3

n2
.

Proof. Consider a planar embedding G̃ of G with cr(G ) crossings. Let S
be a random subset of V obtained by choosing each vertex of G
independently with probability p = 4n/m ≤ 1. Define the induced
subgraph H = G [S ] and define the planar embedding H̃ = G̃ [S ] (a
sub-embedding of G̃ ).

Define random variables X , Y , Z on Ω = P(V ) as follows: X is the
number of vertices in S , Y is the number of edges in H = G [S ], and Z is
the number of crossings of H̃ = G̃ [S ]. By the “trivial lower bound” of
Note 13.2.A, for any S ∈ Ω we have Z (S) ≥ Y (S)− 3X (S).
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Lemma 13.1. The Crossing Lemma

Lemma 13.1 (continued)

Lemma 13.1. The Crossing Lemma.

Let G be a simple graph with m ≥ 4n. Then cr(G ) ≥ 1

64

m3

n2
.

Proof (continued). Now E (X ) = pn, E (Y ) = p2m (since the probability
of a particular edge being chosen in the probability that both ends of the
edge are chosen), and E (Z ) = p4cr(G ) (since each crossing in G̃ is
determined by two particular edges or their four particular vertices). Hence

p4cr(G ) ≥ p2m − 3pn

or

cr(G ) ≥ m

p2
− 3n

p3
=

pm − 3n

p3
=

4n − 3n

(4n/m)3
=

nm3

64n3
=

1

64

m3

n2
,

as claimed.
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Theorem 13.2

Theorem 13.2

Theorem 13.2. Let P be a set of n points in the plane, and let ` be the
number of lines in the plane passing through at least k + 1 of these points,
where 1 ≤ k ≤ 2

√
2n. Then ` < 32n2/k3.

Proof. Form a graph G with vertex set P whose edges are the segments
between consecutive points on the lines which pass through at least k + 1
points of set P. So each line though k + 1 points results in a path in G
with k edges (and k + 1 vertices). Since there are ` such lines, then G has
at least `k edges.

Now the k edges of G which result from a particular line
cannot cross each other and any two edges of G that cross must lie on two
distinct lines in the plane and since two lines intersect in at most one
point, we can only have at most one crossing associated with any pair of
edges (that is, given any lines `1 and `2 in the plane, there can be at most
one crossing of edges in G which are associated with these lines). So the

number of crossings in G satisfies cr(G ) ≤
(

`

2

)
.

() Graph Theory March 6, 2021 5 / 14



Theorem 13.2

Theorem 13.2

Theorem 13.2. Let P be a set of n points in the plane, and let ` be the
number of lines in the plane passing through at least k + 1 of these points,
where 1 ≤ k ≤ 2

√
2n. Then ` < 32n2/k3.

Proof. Form a graph G with vertex set P whose edges are the segments
between consecutive points on the lines which pass through at least k + 1
points of set P. So each line though k + 1 points results in a path in G
with k edges (and k + 1 vertices). Since there are ` such lines, then G has
at least `k edges. Now the k edges of G which result from a particular line
cannot cross each other and any two edges of G that cross must lie on two
distinct lines in the plane and since two lines intersect in at most one
point, we can only have at most one crossing associated with any pair of
edges (that is, given any lines `1 and `2 in the plane, there can be at most
one crossing of edges in G which are associated with these lines). So the

number of crossings in G satisfies cr(G ) ≤
(

`

2

)
.

() Graph Theory March 6, 2021 5 / 14



Theorem 13.2

Theorem 13.2

Theorem 13.2. Let P be a set of n points in the plane, and let ` be the
number of lines in the plane passing through at least k + 1 of these points,
where 1 ≤ k ≤ 2

√
2n. Then ` < 32n2/k3.

Proof. Form a graph G with vertex set P whose edges are the segments
between consecutive points on the lines which pass through at least k + 1
points of set P. So each line though k + 1 points results in a path in G
with k edges (and k + 1 vertices). Since there are ` such lines, then G has
at least `k edges. Now the k edges of G which result from a particular line
cannot cross each other and any two edges of G that cross must lie on two
distinct lines in the plane and since two lines intersect in at most one
point, we can only have at most one crossing associated with any pair of
edges (that is, given any lines `1 and `2 in the plane, there can be at most
one crossing of edges in G which are associated with these lines). So the

number of crossings in G satisfies cr(G ) ≤
(

`

2

)
.

() Graph Theory March 6, 2021 5 / 14



Theorem 13.2

Theorem 13.2 (continued)

Proof (continued). So either k` < 4n (in which case The Crossing

Lemma does not apply) or

(
`

2

)
≥ cr(G ) ≥ 1

64

m3

n2
≥ 1

64

(k`)3

n2
by The

Crossing Lemma. If k` < 4n then

` <
4n

k
≤ 4n

k

(
8n

k2

)
since we hypothesize that

1 ≤ 2
√

2n

k
or 1 ≤ 8n

k2

= 32n/k3, as claimed.

If

(
`

2

)
≥ cr(G ) ≥ 1

64

(k`)3

n2
then we have

`2

2
>

`2 − `

2
=

(
`

2

)
≥ cr(G ) ≥ 1

64

(k`)3

n2
and so `2 >

1

32

(k`)3

n2
or

` <
32n2

k3
, as claimed.
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Theorem 13.3

Theorem 13.3

Theorem 13.3. Let P be a set of n points in the plane, and let k be the
number of pairs of points of P at unit distance. Then k < 5n4/3.

Proof. Draw a unit circle around each point of P. Let ni be the number
of these circles passing through exactly i points of P. Each circle passes
through between 0 and n− 1 points of P so the total number of circles, n,

satisfies n =
n−1∑
i=0

ni .

For any pair of points p1 and p2 a distance 1 apart,

there is a circle centered at p1 passing through p2, and there is a circle
centered at p2 passing through p1. Now the number of points which lie on

some circle, counting multiplicity, is
n−1∑
i=0

ini , so the number k of pairs of

points a distance 1 apart satisfies k =
1

2

n−1∑
i=0

ini .
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Theorem 13.3

Theorem 13.3 (continued 1)

Proof (continued). Now form a graph H with vertex set P whose edges
are the arcs of the circles between consecutive points on the circles that
pass through at least three points of P. Then

e(H) =
n−1∑
i=3

ini =
n−1∑
i=0

ini − (0n0 + 1n1 + 2n2) = 2k − n1 − 2n2 ≥ 2k − 2n.

Some pairs of vertices of H might be joined by two parallel edges. Delete
from H one of each pair of parallel edges, so as to obtain a simple graph
G with e(G ) ≥ k − n. Now any two circles in the plane can intersect in at
most two points, and since we have n circles then the greatest possible
number of intersections of circles is 2×

(n
2

)
= n(n − 1). Hence for graph

G , cr(G ) ≤ n(n − 1). If e(G ) < 4n then 4n > e(G ) ≥ k − n and
k ≤ 5n ≤ 5n4/3, as claimed.
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Theorem 13.3

Theorem 13.3 (continued 2)

Theorem 13.3. Let P be a set of n points in the plane, and let k be the
number of pairs of points of P at unit distance. Then k < 5n4/3.

Proof (continued). If e(G ) ≥ 4n then The Crossing Lemma applies so
that

cr(G ) ≥ 1

64

(e(G ))3

n2
≥ (k − n)3

64n2
.

Hence (for n ≥ 1)

n2 > n2 − n = n(n − 1) ≥ cr(G ) ≥ (k − n)3

64n2

or n2/3 >
k − n

4n2/3
or 4n4/3 > k − n or

k < 4n4/3 + n ≤ 4n4/3 + n4/3 = 5n4/3, as claimed.
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Proposition 13.4. Markov’s Inequality

Proposition 13.4

Proposition 13.4. Markov’s Inequality
Let X be a nonnegative finite random variable on probability space (Ω,P)

and t > 0. Then P(X ≥ t) ≤ E (X )

t
.

Proof. We have by the definition of expectation that

E (X ) =
∑
ω∈Ω

X (ω)P(ω) ≥
∑

ω∈Ω,X (ω)≥t

X (ω)P(ω)

≥
∑

ω∈Ω,X (ω)≥t

tP(ω) = t
∑

ω∈Ω,X (ω)≥t

P(ω) = tP(X ≥ t),

as claimed.
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Corollary 13.5

Corollary 13.5

Corollary 13.5. Let Xn be a nonnegative integer-valued random variable
in a probability space (Ωn,Pn) where n ∈ N. If E (Xn) → 0 as n →∞,
then P(Xn = 0) → 1 as n →∞.

Proof. Let X = Xn and t = 1 in Markov’s Inequality (Proposition 13.4).
Then P(Xn ≥ 1) ≤ E (Xn) for all n ∈ N. Since we hypothesize E (Xn) → 0
as n →∞, then it follows (by the Sandwich Theorem, say) that
P(Xn ≥ 1) → 0 as n →∞. Since P(Xn = 0) = 1− P(Xn ≥ 1) then
P(Xn = 0) → 1 as n →∞, as claimed.
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Theorem 13.6

Theorem 13.6

Theorem 13.6. A random graph in Gn,p almost surely has stability
number at most d2p−1 log ne.

Proof. Let G ∈ Gn,p and let S be a given set of k + 1 vertices of G where

k ∈ N. Then S is a stable set of G if none of the

(
k + 1

2

)
edges joining

two vertices of set S are present in G . This happens with probability

(1− p)(
k+1

2 ).

Let As denote the event that S is a stable set of G , and let XS denote the
indicator random variable for this event. By equation (13.5) we have

E (XS) = P(XS = 1) = P(AS) = (1− p)(
k+1

2 ).

Let Xn be the number of stable sets of cardinality k + 1 in G ∈ Gn,p. Since

XS is the indicator random variable then Xn =
∑

S⊆V ,|S |=k+1

XS .
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Theorem 13.6

Theorem 13.6 (continued 1)

Proof (continued). By linearity of expectation,

E (Xn) = E

 ∑
S⊆V ,|S |=k+1

XS

 =
∑

S⊆V ,|S |=k+1

E (XS)

=
∑

S⊆V ,|S |=k+1

(1− p)(
k+1

2 ) =

(
n

k + 1

)
(1− p)(

k+1
2 ).

In Exercise 13.2.1 it is to be shown that(
n

k + 1

)
≤ nk+1

(k + 1)!
and 1− p ≤ e−p.

So

E (X ) =

(
n

k + 1

)
(1− p)(

k+1
2 ) ≤ nk+1

(k + 1)!
(e−p)(

k+1
2 )

=
nk+1e−p(k+1)k/2

(k + 1)!
=

(ne−pk/2)k+1

(k + 1)!
. (13.7)
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Theorem 13.6

Theorem 13.6 (continued 2)

Proof (continued). Suppose k = d2p−1 log ne. Then k ≥ 2p−1 log n and

so ek ≥ e2p−1 log n = n2/p or 1 ≥ n2/pe−k or 1p/2 ≥
(
n2/pe−k

)p/2
or

1 ≥ ne−pk/2. So by equation (13.7), E (Xn) ≤
1

(k + 1)!
. As n →∞,

k ≥ 2

p
log n →∞ and hence E (Xn) → 0 (this conclusion also holds for

any value of k larger than d2p−1 log ne). Now Xn is integer valued and
nonnegative, so the hypotheses of Corollary 13.5 are satisfied and hence
P(Xn = 0) → 1 as n →∞. Since Xn is the number of stable sets of
cardinality k + 1 = d2p−1 log ne+ 1 in G , we have shown that, almost
surely, there are 0 such stable sets. So, equivalently, almost surely the
maximum size stable set (that is, the stability number) is of cardinality at
most k = d2p−1 log ne, as claimed.
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