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Graph Theory
Chapter 13. The Probabilistic Method

Theorem 13.7. CHEBYSHEV’S INEQUALITY.
Let X be a random variable on a finite probability space and let t > 0.

13.3. Variance—Proofs of Theorems Then V(X
PX — E(X) 2 ) < ).
Proof. We have
uh P(IX—E(X)|>t) = P((X—E(X))*>1)
E((X — E(X))?
GraphThecey < (« 2 (X))°) by Markov's Inequality
: (Proposition 13.4)
\ V(X)
e = t2 ’
) Springer
as claimed. O
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Corollary 13.8 Theorem 13.9

Corollary 13.8

Corollary 13.8. Let X, be a random variable in a finite probability space
(Qn, P,) where n > 1. If E(X,) # 0 and V(X,) < E?(X,), then
P(X,=0) — 0 as n — 0.

Proof. With X = X, and t = |E(X,)|, Chebyshev's Inequality implies

V(Xn)
P(X— ECG) = ECO)D < gy ()
Now when X, = 0 we have | X, — E(X,)| = |0 — E(X,)| = |E(Xa))|, and
“Xp = 0" is included in values of X, such that | X, — E(X,)| > |E(Xh)|.
Hence, P(X, = 0) < P(|Xn — E(Xn)| > |E(X»)|) and so, by (x),
P(X, = 0) < V(X)/E?(X,). The hypothesis V(X,) < E?(X,) means
that V(X,)/E?(X,) — 0 as n — co. Therefore (by the Sandwich
Theorem, say) P(X, =0) — 0 as n — oo, as claimed. O
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Theorem 13.9

Theorem 13.9. Let G € G, 1/5. For 0 < k < n, set f(k) = <Z> 2—(5)

and let k* be the least value of k for which f(k) is less than one. Then
almost surely the stability number of G, a(G), takes one of the three
values k* — 2, k* — 1, or k*.

Proof. Let G € G, 1/, and let X C V. Define Xs as the indicator random

variable for the event As that S is a stable set in G. Set

X = Z Xs (so X is the number of stable sets of cardinality k in
SCV,|S|=k

G). As shown in the proof of Theorem 13.6, E(X) = P

the k+ 1 in the proof of Theorem 13.6 with k here and take p of Theorem
13.6 as 1/2 here), so we have E(X) = f(k) # 0 and, as is to be shown in
Exercise 13.2.11(b), almost surely a(G) < k*. So if we show also that
almost surely a(G) > k* — 2, the result will follow.

QT@MWQ
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Theorem 13.9 Theorem 13.9

Theorem 13.9 (continued 1) Theorem 13.9 (continued 2)
Proof (continued). We set k = k* — 2 and show V/(X) < E?(X). We Proof (continued). If |SN T| =i where 2 < i < k — 1 then, with A
can then apply Corollary 13.8 to conclude that P(X =0) — 0 as n — oc. denoting the complement of event A,

That is, G almost surely has a stable set of size k = k* — 2 and so almost
surely a(G) > k* — 2. Now we establish that fact that V(X) < E?(X).

By Exercise 13.2.11(b) we have for k = k* — 2 that = 0P(AsNAT)+0P(AsNAT)+0P(AsNAT)+1P(AsNAT) = P(AsNAT). (x+)
Now in event As, S is a stable set if G contains none of the possible (12‘)

k
edges with both ends in S, and since p = 1/2 then P(Ag) = (%)(2)

k
Similarly, P(A7) = (%)(2) Now both As and At are stable sets if G
V(X) < E(X)+ Z C(Xs, C7). (%) contains none of the possible edges with either (1) both ends in S, or (2)
SAT both ends in T. When |S N T| = i, this involves a total of 2() — ()
edges so that

C(Xs, X1) = E(Xs X7) — E(Xs)E(XT) < E(XsXT)

k < 2logynand f(k) > n/4. (13.9)

It is to be shown in Exercise 13.3.1 that

Let S and T be two sets of k vertices. If [SN T| € {0,1} then

C(Xs, X7) = 0 since no edge of G has both ends in SN T and the events 1\ 2()-() ()-2(%)
of S and T being stable sets are independent so that P(AsnAr) = (5) = 2\2/7 2/,
E(XsXt) = E(Xs)E(XT).
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Theorem 13.9 (continued 3) Theorem 13.9 (continued 4)

Proof (continued). We now count the number of choices of S and T.

First, there are (]) choices for S, then (¥) choices for SN T, and finally
("_’f) choices for the vertices in T\ S. So there are (}) (k) (’](__’f) choices -1

Proof (continued). So it remains to show that

for S and T. Then o 3 <k> <k> ('L - §>2(;)—2(;) < E¥(X) = @22—2(;)
V(X) < E(X)+ > C(Xs,Xr) by (¥) =2
S#ET or equivalently that
< E(X)+ Y P(AsNAT) by (x+) e
7T (Z) Zg(i) —0asn— oo (13.10)
i=2

|
m
X
g

AN
Now E(X) = (1)27(2) « E2(xl): (7)2272(2) since

F00 (n)zl—(é) ) 2((;)) TEn @ (e) (e ez <)

k

where g(i) = (k) (’](__k)2(é) We have

1 1




Theorem 13.9 (continued 5)

Proof (continued). For 2 < < k —2,

. k n—k i1
gli+1) _ (1) (k—i—1)2_( )
&) () ()20
! —K)! L
B (i+1)1(l;<|—i—1)1 (k—i—l)(!,zn—)2k+i+1)! 2(i+1)i/2
o k! (n—k)! 2i(i—=1)/2
k1) (k=D (n—2k 7!
(k=) (k — i) ; k220 :
T GrD( 2krirD)” a2k S T

and n—2k+i+1>n—2k.

Set t = |[clog, n| where 0 < ¢ < 1. Observe that f(x) = 2¥/x is an
increasing function for x > 1/In2 ~ 1.44.
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Theorem 13.9 (continued 7)

Proof (continued). So

(1) Ss0=(p) w<(}) w(,”,)

Ki(n— k) 5 n! B tk2k(k — 1)
B n! (k—2)(n—k+2)!  (n—k+2)(n—k+1)
- tk* — tk*
 n2—nlk—1)—n(k—-2)+ (k—-2)(k—1)
th* — tk3
= . 13.11
k=3t k—a)k_1 t¥nT—oe (131
k—1
In equation (13.10) we consider Zg(i), so we now need to address the
t=2
valuesof fof t +1,t+2,... k—1.
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Theorem 13.9 (continued 6)
Proof (continued). Then for 2 </ <t —1 we have
g(i+1)

< 2—’ i as just shown
g(i) i n—2k o

2t k2
< (?> (n — 2k> since 2¥/x is increasing and i <t —1<t
c 2] 2
< ! (2log, n) since 2¥/x is increasing and
clogy n n—4log, n
t = |clog, n|] < clog, n, and k < 2log, n by (13.9)
_ 4n°log, n
~ c(n—4logyn)’
4nc| 4nc |
Now — - %821 | 0 so for n sufficiently large _ T 081 <
c(n—4log, n) c(n— 4log, n)
g(i+1) . . iy
and hence - < 1. Thatis, for 2 < i <t —1 and n sufficiently
g(i
large, g(i + 1) < g(i). Therefore g(t) < g(t—1) <--- < g(2).
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Theorem 13.9 (continued 8)

Proof (continued). ...we now need to address the values of i of
t+1,t+2,...,k—1. We have

£ (LG Omm () ()

k—
k )(”— k) —(k—i)(k+i-1)/2
) )2 since
) (k — k—i

<i>_ k>:i(igl)_k(k2—1):i2—i—2k2+k
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Theorem 13.9 (continued 9)

Proof (continued). ...
k-1 Lkl P no k o
Z g(i) = 206) Z (k N i> (k B />2_(k_’)(k+’_1)/2 since

<;’>_<12<>:'__:—k(k—i)—z(k—i)(i—l)

2(5) k_il <k) <n - k) 2(k=i=1)/2 by letting j = i — t
= 2 ) . y letting j =1 —
J

PR
and when j ranges from t + 1 to k — 1 then j ranges from
1to k — t — 1, respectively, and k — i ranges from
k —t—1to 1, respectively; also replacing j with kK — i in
2k —j—1gives2k — (k—i)—1=k+i—1, as given
Graph Theory
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Theorem 13.9

Theorem 13.9 (continued 11)

Proof (continued). To bound this last term, we use the fact that
k* + log, k* — 1 > 2log, n, as is to be shown in Exercise 13.2.11(a). This
implies 2K tlog2 k*—1 > 2logz n o DK™ *p=1 > 2 or 2K*/2\/k*¥1//2 > n or
27K /2 <\ Jk*J2n~1 or 2= (k+2)/2 <\ [k +2)/2n71 (since k = k* —2) or
27K2 <2, /(k+2)/2n"t = \/2k + 4n~. So for n sufficiently large
k(n— k)2~ F9/2 < k(n— k)V/2k + 4n~127t/2
< k(n— k)V2k + an~t\/2n=</?
since t = |clogy, n| > (clog, n) — 1 and so
2t > 2(c|og2 n)—1 — nC/2 or 2—t/2 < \/En—c/2

kv/4k + 8 <1 — 5) n? <1
n

for n sufficiently large (since this quantity goes to 0 as n — o). (This
differs slightly from the book's computations. . .the book may have a small
error in it here.)
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Theorem 13.9 (continued 10)

Proof (continued). ...

S ey - 203 (5) (7 F)zimsvr

i=t+1 = M
k—t—1 .
k! (n— k)! (ki J
— 20) __C _ (2-ek—-)2
JZ_; JUk =) Y (n—k —j)! < )
k—t—1

(n— k)!

i k! IPIRYAVES
Y (k=) (n—k—J)! (2 e )/2>J since for

j=1
1<j<k—1t—1we have
2k—j—1>2k—(k—t—1)—1=k+t
k—t—1

< 20) 3 (k(n_k)z—(k+t)/2)j‘ 4
=1
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Theorem 13.9 (continued 12)

Proof (continued). So from (1), for n sufficiently large,
k—1 k—t—1

15 / 18

Y gli) < 2() 3 (k(,, _ k)z—(k+t)/2)j <205 Yoi= 203) (k—t-1).

i=t+1 j=1 j=1

From equation (13.9) we have f(k) = (Z) 2 (1) > n/4, so we now have

<Z> - kz_:l g(i) < <Z>_12(5)(k —t-1)

i=t+1

k—t—1< k—t—1 4k—t—1)
f(ky — n/4 n

and as n — oo we see that

<Z)_1 ki g(i) — 0as n — oo.

i=t+1

(13.12)
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Theorem 13.9 (continued 13)

Theorem 13.9. Let G € G, /5. For 0 < k < n, set f(k) = (Z) 2—(5)

and let k* be the least value of k for which f(k) is less than one. Then
almost surely the stability number of G, a(G), takes one of the three
values k* — 2, k* — 1, or k*.

Proof (continued). Combining (13.11) and (13.12) we have (13.10):

—1 k-1
(Z) Zg(i) — 0as n— oo.
i=2

As described above, this is sufficient to establish the claim. O



