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Theorem 13.7. Chebyshev’s Inequality

Theorem 13.7

Theorem 13.7. Chebyshev’s Inequality.
Let X be a random variable on a finite probability space and let t > 0.
Then

P(|X − E (X )| ≥ t) ≤ V (X )

t2
.

Proof. We have

P(|X − E (X )| ≥ t) = P((X − E (X ))2 ≥ t2)

≤ E ((X − E (X ))2)

t2
by Markov’s Inequality

(Proposition 13.4)

=
V (X )

t2
,

as claimed.
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Corollary 13.8

Corollary 13.8

Corollary 13.8. Let Xn be a random variable in a finite probability space
(Ωn,Pn) where n ≥ 1. If E (Xn) 6= 0 and V (Xn) � E 2(Xn), then
P(Xn = 0) → 0 as n →∞.

Proof. With X = Xn and t = |E (Xn)|, Chebyshev’s Inequality implies

P(|Xn − E (Xn)| ≥ |E (Xn)|) ≤
V (Xn)

E 2(Xn)
. (∗)

Now when Xn = 0 we have |Xn − E (Xn)| = |0− E (Xn)| = |E (Xn))|, and
“Xn = 0” is included in values of Xn such that |Xn − E (Xn)| ≥ |E (Xn)|.

Hence, P(Xn = 0) ≤ P(|Xn − E (Xn)| ≥ |E (Xn)|) and so, by (∗),
P(Xn = 0) ≤ V (X )/E 2(Xn). The hypothesis V (Xn) � E 2(Xn) means
that V (Xn)/E 2(Xn) → 0 as n →∞. Therefore (by the Sandwich
Theorem, say) P(Xn = 0) → 0 as n →∞, as claimed.
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Theorem 13.9

Theorem 13.9

Theorem 13.9. Let G ∈ Gn,1/2. For 0 ≤ k ≤ n, set f (k) =

(
n

k

)
2−(k

2)

and let k∗ be the least value of k for which f (k) is less than one. Then
almost surely the stability number of G , α(G ), takes one of the three
values k∗ − 2, k∗ − 1, or k∗.

Proof. Let G ∈ Gn,1/2 and let X ⊂ V . Define XS as the indicator random
variable for the event AS that S is a stable set in G . Set
X =

∑
S⊆V ,|S |=k

XS (so X is the number of stable sets of cardinality k in

G ).

As shown in the proof of Theorem 13.6, E (X ) =

(
n

k

)
2−(k

2) (replace

the k + 1 in the proof of Theorem 13.6 with k here and take p of Theorem
13.6 as 1/2 here), so we have E (X ) = f (k) 6= 0 and, as is to be shown in
Exercise 13.2.11(b), almost surely α(G ) ≤ k∗. So if we show also that
almost surely α(G ) ≥ k∗ − 2, the result will follow.

() Graph Theory March 18, 2021 5 / 18



Theorem 13.9

Theorem 13.9

Theorem 13.9. Let G ∈ Gn,1/2. For 0 ≤ k ≤ n, set f (k) =

(
n

k

)
2−(k

2)

and let k∗ be the least value of k for which f (k) is less than one. Then
almost surely the stability number of G , α(G ), takes one of the three
values k∗ − 2, k∗ − 1, or k∗.

Proof. Let G ∈ Gn,1/2 and let X ⊂ V . Define XS as the indicator random
variable for the event AS that S is a stable set in G . Set
X =

∑
S⊆V ,|S |=k

XS (so X is the number of stable sets of cardinality k in

G ). As shown in the proof of Theorem 13.6, E (X ) =

(
n

k

)
2−(k

2) (replace

the k + 1 in the proof of Theorem 13.6 with k here and take p of Theorem
13.6 as 1/2 here), so we have E (X ) = f (k) 6= 0 and, as is to be shown in
Exercise 13.2.11(b), almost surely α(G ) ≤ k∗. So if we show also that
almost surely α(G ) ≥ k∗ − 2, the result will follow.

() Graph Theory March 18, 2021 5 / 18



Theorem 13.9

Theorem 13.9

Theorem 13.9. Let G ∈ Gn,1/2. For 0 ≤ k ≤ n, set f (k) =

(
n

k

)
2−(k

2)

and let k∗ be the least value of k for which f (k) is less than one. Then
almost surely the stability number of G , α(G ), takes one of the three
values k∗ − 2, k∗ − 1, or k∗.

Proof. Let G ∈ Gn,1/2 and let X ⊂ V . Define XS as the indicator random
variable for the event AS that S is a stable set in G . Set
X =

∑
S⊆V ,|S |=k

XS (so X is the number of stable sets of cardinality k in

G ). As shown in the proof of Theorem 13.6, E (X ) =

(
n

k

)
2−(k

2) (replace

the k + 1 in the proof of Theorem 13.6 with k here and take p of Theorem
13.6 as 1/2 here), so we have E (X ) = f (k) 6= 0 and, as is to be shown in
Exercise 13.2.11(b), almost surely α(G ) ≤ k∗. So if we show also that
almost surely α(G ) ≥ k∗ − 2, the result will follow.

() Graph Theory March 18, 2021 5 / 18



Theorem 13.9

Theorem 13.9 (continued 1)

Proof (continued). We set k = k∗ − 2 and show V (X ) � E 2(X ). We
can then apply Corollary 13.8 to conclude that P(X = 0) → 0 as n →∞.
That is, G almost surely has a stable set of size k = k∗ − 2 and so almost
surely α(G ) ≥ k∗ − 2. Now we establish that fact that V (X ) � E 2(X ).

By Exercise 13.2.11(b) we have for k = k∗ − 2 that

k < 2 log2 n and f (k) ≥ n/4. (13.9)

It is to be shown in Exercise 13.3.1 that

V (X ) ≤ E (X ) +
∑
S 6=T

C (XS ,CT ). (∗)

Let S and T be two sets of k vertices. If |S ∩ T | ∈ {0, 1} then
C (XS ,XT ) = 0 since no edge of G has both ends in S ∩ T and the events
of S and T being stable sets are independent so that
E (XSXT ) = E (XS)E (XT ).
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Theorem 13.9

Theorem 13.9 (continued 2)

Proof (continued). If |S ∩ T | = i where 2 ≤ i ≤ k − 1 then, with A
denoting the complement of event A,

C (XS ,XT ) = E (XSXT )− E (XS)E (XT ) ≤ E (XSXT )

= 0P(AS∩AT )+0P(AS∩AT )+0P(AS∩AT )+1P(AS∩AT ) = P(AS∩AT ). (∗∗)

Now in event AS , S is a stable set if G contains none of the possible
(k
2

)
edges with both ends in S , and since p = 1/2 then P(AS) =

(
1
2

)(k
2).

Similarly, P(AT ) =
(

1
2

)(k
2). Now both AS and AT are stable sets if G

contains none of the possible edges with either (1) both ends in S , or (2)
both ends in T . When |S ∩ T | = i , this involves a total of 2

(k
2

)
−

( i
2

)
edges so that

P(AS ∩ AT ) =

(
1

2

)2(k
2)−( i

2)
= 2( i

2)−2(k
2).
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Theorem 13.9

Theorem 13.9 (continued 3)

Proof (continued). We now count the number of choices of S and T .
First, there are

(n
k

)
choices for S , then

(k
i

)
choices for S ∩ T , and finally(n−k

k−i

)
choices for the vertices in T \ S . So there are

(n
k

)(k
i

)(n−k
k−i

)
choices

for S and T . Then

V (X ) ≤ E (X ) +
∑
S 6=T

C (XS ,XT ) by (∗)

≤ E (X ) +
∑
S 6=T

P(AS ∩ AT ) by (∗∗)

= E (X ) +
k−1∑
i=2

(
n

k

)(
k

i

)(
n − k

k − i

)
2( i

2)−2(k
2).

Now E (X ) =
(n
k

)
2−(k

2) � E 2(X ) =
(n
k

)2
2−2(k

2) since

E (X )

E 2(X )
=

1(n
k

)
2−(k

2)
=

2(k
2)(n

k

) → 0 as n →∞.
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Theorem 13.9

Theorem 13.9 (continued 4)

Proof (continued). So it remains to show that

k−1∑
i=2

(
n

k

)(
k

i

)(
n − k

k − i

)
2( i

2)−2(k
2) � E 2(X ) =

(
n

k

)2

2−2(k
2)

or equivalently that(
n

k

)−1 k−1∑
i=2

g(i) → 0 as n →∞ (13.10)

where g(i) =
(k

i

)(n−k
k−i

)
2( i

2). We have

g(2) =

(
k

2

)(
n − k

k − 2

)
2 = k(k − 1)

(
n − k

k − 2

)
< k2

(
n

k − 2

)
.
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Theorem 13.9

Theorem 13.9 (continued 5)

Proof (continued). For 2 ≤ i ≤ k − 2,

g(i + 1)

g(i)
=

( k
i+1

)( n−k
k−i−1

)
2(i+1

2 )(k
i

)(n−k
k−i

)
2( i

2)

=

k!
(i+1)!(k−i−1)!

(n−k)!
(k−i−1)!(n−2k+i+1)!

k!
i!(k−i)!

(n−k)!
(k−i)!(n−2k+i)!

2(i+1)i/2

2i(i−1)/2

=
(k − i)

(i + 1)

(k − i)

(n − 2k + i + 1)
2i <

k22i

i(n − 2k)
since i + 1 > i

and n − 2k + i + 1 > n − 2k.

Set t = bc log2 nc where 0 < c < 1. Observe that f (x) = 2x/x is an
increasing function for x > 1/ ln 2 ≈ 1.44.
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Theorem 13.9

Theorem 13.9 (continued 6)

Proof (continued). Then for 2 ≤ i ≤ t − 1 we have

g(i + 1)

g(i)
<

(
2i

i

) (
k2

n − 2k

)
as just shown

≤
(

2t

t

) (
k2

n − 2k

)
since 2x/x is increasing and i ≤ t − 1 < t

<

(
nc

c log2 n

) (
(2 log2 n)2

n − 4 log2 n

)
since 2x/x is increasing and

t = bc log2 nc ≤ c log2 n, and k < 2 log2 n by (13.9)

=
4nc log2 n

c(n − 4 log2 n)
.

Now
4nc log2 n

c(n − 4 log2 n)
→ 0 so for n sufficiently large

4nc log2 n

c(n − 4 log2 n)
≤ 1,

and hence
g(i + 1)

g(i)
≤ 1. That is, for 2 ≤ i ≤ t − 1 and n sufficiently

large, g(i + 1) ≤ g(i). Therefore g(t) ≤ g(t − 1) ≤ · · · ≤ g(2).
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Theorem 13.9

Theorem 13.9 (continued 7)

Proof (continued). So(
n

k

)−1 t∑
i=2

g(i) ≤
(

n

k

)−1

tg(2) <

(
n

k

)−1

tk2

(
n

k − 2

)

=
k!(n − k)!

n!
tk2 n!

(k − 2)!(n − k + 2)!
=

tk2k(k − 1)

(n − k + 2)(n − k + 1)

=
tk4 − tk3

n2 − n(k − 1)− n(k − 2) + (k − 2)(k − 1)

=
tk4 − tk3

n2 − n(2k − 3) + (k − 2)(k − 1)
→ 0 as n →∞. (13.11)

In equation (13.10) we consider
k−1∑
t=2

g(i), so we now need to address the

values of i of t + 1, t + 2, . . . , k − 1.
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Theorem 13.9

Theorem 13.9 (continued 8)

Proof (continued). . . . we now need to address the values of i of
t + 1, t + 2, . . . , k − 1. We have

k−1∑
i=t+1

g(i) =
k−1∑

i=t+1

(
k

i

)(
n − k

k − i

)
2( i

2)

= 2(k
2)

k−1∑
i=t+1

(
k

k − i

)(
n − k

k − i

)
2( i

2)−(k
2) since

(
k

i

)
=

(
k

k − i

)

= 2(k
2)

k−1∑
i=t+1

(
k

k − i

)(
n − k

k − i

)
2−(k−i)(k+i−1)/2 since

(
i

2

)
−

(
k

2

)
=

i(i − 1)

2
− k(k − 1)

2
=

i2 − i − k2 + k

2

=
−k(k − i)− k(i − 1) + i(i − 1)

2
. . .
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Theorem 13.9

Theorem 13.9 (continued 9)

Proof (continued). . . .

k−1∑
i=t+1

g(i) = 2(k
2)

k−1∑
i=t+1

(
k

k − i

)(
n − k

k − i

)
2−(k−i)(k+i−1)/2 since(

i

2

)
−

(
k

2

)
= · · · = −k(k − i)− (k − i)(i − 1)

2

=
−(k − 1)(k + i − 1)

2

= 2(k
2)

k−t−1∑
j=1

(
k

j

)(
n − k

j

)
2−j(2k−j−1)/2 by letting j = i − t

and when i ranges from t + 1 to k − 1 then j ranges from

1 to k − t − 1, respectively, and k − i ranges from

k − t − 1 to 1, respectively; also replacing j with k − i in

2k − j − 1 gives 2k − (k − i)− 1 = k + i − 1, as given
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Theorem 13.9

Theorem 13.9 (continued 10)

Proof (continued). . . .

k−1∑
i=t+1

g(i) = 2(k
2)

k−t−1∑
j=1

(
k

j

)(
n − k

j

)
2−j(2k−j−1)/2

= 2(k
2)

k−t−1∑
j=1

k!

j!(k − j)!

(n − k)!

j!(n − k − j)!

(
2−(2k−j−1)/2

)j

< 2(k
2)

k−t−1∑
j=1

k!

(k − j)!

(n − k)!

(n − k − j)!

(
2−(k+t)/2

)j
since for

1 ≤ j ≤ k − t − 1 we have

2k − j − 1 ≥ 2k − (k − t − 1)− 1 = k + t

< 2(k
2)

k−t−1∑
j=1

(
k(n − k)2−(k+t)/2

)j
. (††)
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Theorem 13.9

Theorem 13.9 (continued 11)

Proof (continued). To bound this last term, we use the fact that
k∗ + log2 k∗ − 1 ≥ 2 log2 n, as is to be shown in Exercise 13.2.11(a). This
implies 2k∗+log2 k∗−1 ≥ 22 log2 n or 2k∗k∗2−1 ≥ n2 or 2k∗/2

√
k∗1/

√
2 ≥ n or

2−k∗/2 ≤
√

k∗/2n−1 or 2−(k+2)/2 ≤
√

(k + 2)/2n−1 (since k = k∗ − 2) or
2−k/2 ≤ 2

√
(k + 2)/2n−1 =

√
2k + 4n−1. So for n sufficiently large

k(n − k)2−(k+t)/2 ≤ k(n − k)
√

2k + 4n−12−t/2

< k(n − k)
√

2k + 4n−1
√

2n−c/2

since t = bc log2 nc > (c log2 n)− 1 and so

2t > 2(c log2 n)−1 = nc/2 or 2−t/2 <
√

2n−c/2

= k
√

4k + 8

(
1− k

n

)
n−c/2 ≤ 1

for n sufficiently large (since this quantity goes to 0 as n →∞). (This
differs slightly from the book’s computations. . . the book may have a small
error in it here.)
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Theorem 13.9

Theorem 13.9 (continued 11)

Proof (continued). To bound this last term, we use the fact that
k∗ + log2 k∗ − 1 ≥ 2 log2 n, as is to be shown in Exercise 13.2.11(a). This
implies 2k∗+log2 k∗−1 ≥ 22 log2 n or 2k∗k∗2−1 ≥ n2 or 2k∗/2

√
k∗1/

√
2 ≥ n or

2−k∗/2 ≤
√

k∗/2n−1 or 2−(k+2)/2 ≤
√

(k + 2)/2n−1 (since k = k∗ − 2) or
2−k/2 ≤ 2

√
(k + 2)/2n−1 =

√
2k + 4n−1. So for n sufficiently large

k(n − k)2−(k+t)/2 ≤ k(n − k)
√

2k + 4n−12−t/2

< k(n − k)
√

2k + 4n−1
√

2n−c/2

since t = bc log2 nc > (c log2 n)− 1 and so

2t > 2(c log2 n)−1 = nc/2 or 2−t/2 <
√

2n−c/2

= k
√

4k + 8

(
1− k

n

)
n−c/2 ≤ 1

for n sufficiently large (since this quantity goes to 0 as n →∞). (This
differs slightly from the book’s computations. . . the book may have a small
error in it here.)
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Theorem 13.9

Theorem 13.9 (continued 12)

Proof (continued). So from (††), for n sufficiently large,

k−1∑
i=t+1

g(i) < 2(k
2)

k−t−1∑
j=1

(
k(n − k)2−(k+t)/2

)j
≤ 2(k

2)
k−t−1∑

j=1

1 = 2(k
2)(k−t−1).

From equation (13.9) we have f (k) =

(
n

k

)
2−(k

n) ≥ n/4, so we now have

(
n

k

)−1 k−1∑
i=t+1

g(i) <

(
n

k

)−1

2(k
2)(k − t − 1)

=
k − t − 1

f (k)
≤ k − t − 1

n/4
=

4(k − t − 1)

n

and as n →∞ we see that(
n

k

)−1 k−1∑
i=t+1

g(i) → 0 as n →∞. (13.12)
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Theorem 13.9

Theorem 13.9 (continued 13)

Theorem 13.9. Let G ∈ Gn,1/2. For 0 ≤ k ≤ n, set f (k) =

(
n

k

)
2−(k

2)

and let k∗ be the least value of k for which f (k) is less than one. Then
almost surely the stability number of G , α(G ), takes one of the three
values k∗ − 2, k∗ − 1, or k∗.

Proof (continued). Combining (13.11) and (13.12) we have (13.10):(
n

k

)−1 k−1∑
i=2

g(i) → 0 as n →∞.

As described above, this is sufficient to establish the claim.
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