Graph Theory

Chapter 13. The Probabilistic Method

13.3. Variance—Proofs of Theorems

Table of contents

(1) Theorem 13.7. Chebyshev's Inequality
(2) Corollary 13.8
(3) Theorem 13.9

Theorem 13.7

Theorem 13.7. Chebyshev's Inequality.
Let X be a random variable on a finite probability space and let $t>0$.
Then

$$
P(|X-E(X)| \geq t) \leq \frac{V(X)}{t^{2}} .
$$

Proof. We have

$$
\begin{aligned}
P(|X-E(X)| \geq t)= & P\left((X-E(X))^{2} \geq t^{2}\right) \\
\leq & \frac{E\left((X-E(X))^{2}\right)}{t^{2}} \text { by Markov's Inequality } \\
& (\text { Proposition 13.4) } \\
= & \frac{V(X)}{t^{2}}
\end{aligned}
$$

Theorem 13.7

Theorem 13.7. Chebyshev's Inequality.
Let X be a random variable on a finite probability space and let $t>0$. Then

$$
P(|X-E(X)| \geq t) \leq \frac{V(X)}{t^{2}} .
$$

Proof. We have

$$
\begin{aligned}
P(|X-E(X)| \geq t) & =P\left((X-E(X))^{2} \geq t^{2}\right) \\
& \leq \frac{E\left((X-E(X))^{2}\right)}{t^{2}} \text { by Markov's Inequality } \\
& =\frac{(\operatorname{Proposition} 13.4)}{t^{2}}
\end{aligned}
$$

as claimed.

Corollary 13.8

Corollary 13.8. Let X_{n} be a random variable in a finite probability space $\left(\Omega_{n}, P_{n}\right)$ where $n \geq 1$. If $E\left(X_{n}\right) \neq 0$ and $V\left(X_{n}\right) \ll E^{2}\left(X_{n}\right)$, then $P\left(X_{n}=0\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. With $X=X_{n}$ and $t=\left|E\left(X_{n}\right)\right|$, Chebyshev's Inequality implies

$$
\begin{equation*}
P\left(\left|X_{n}-E\left(X_{n}\right)\right| \geq\left|E\left(X_{n}\right)\right|\right) \leq \frac{V\left(X_{n}\right)}{E^{2}\left(X_{n}\right)} \tag{*}
\end{equation*}
$$

Now when $X_{n}=0$ we have $\left.\left|X_{n}-E\left(X_{n}\right)\right|=\left|0-E\left(X_{n}\right)\right|=\mid E\left(X_{n}\right)\right) \mid$, and " $X_{n}=0$ " is included in values of X_{n} such that $\left|X_{n}-E\left(X_{n}\right)\right| \geq\left|E\left(X_{n}\right)\right|$.

Corollary 13.8

Corollary 13.8. Let X_{n} be a random variable in a finite probability space $\left(\Omega_{n}, P_{n}\right)$ where $n \geq 1$. If $E\left(X_{n}\right) \neq 0$ and $V\left(X_{n}\right) \ll E^{2}\left(X_{n}\right)$, then $P\left(X_{n}=0\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. With $X=X_{n}$ and $t=\left|E\left(X_{n}\right)\right|$, Chebyshev's Inequality implies

$$
\begin{equation*}
P\left(\left|X_{n}-E\left(X_{n}\right)\right| \geq\left|E\left(X_{n}\right)\right|\right) \leq \frac{V\left(X_{n}\right)}{E^{2}\left(X_{n}\right)} \tag{*}
\end{equation*}
$$

Now when $X_{n}=0$ we have $\left.\left|X_{n}-E\left(X_{n}\right)\right|=\left|0-E\left(X_{n}\right)\right|=\mid E\left(X_{n}\right)\right) \mid$, and " $X_{n}=0$ " is included in values of X_{n} such that $\left|X_{n}-E\left(X_{n}\right)\right| \geq\left|E\left(X_{n}\right)\right|$. Hence, $P\left(X_{n}=0\right) \leq P\left(\left|X_{n}-E\left(X_{n}\right)\right| \geq\left|E\left(X_{n}\right)\right|\right)$ and so, by (*), $P\left(X_{n}=0\right) \leq V(X) / E^{2}\left(X_{n}\right)$. The hypothesis $V\left(X_{n}\right) \ll E^{2}\left(X_{n}\right)$ means that $V\left(X_{n}\right) / E^{2}\left(X_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore (by the Sandwich Theorem, say) $P\left(X_{n}=0\right) \rightarrow 0$ as $n \rightarrow \infty$, as claimed.

Corollary 13.8

Corollary 13.8. Let X_{n} be a random variable in a finite probability space $\left(\Omega_{n}, P_{n}\right)$ where $n \geq 1$. If $E\left(X_{n}\right) \neq 0$ and $V\left(X_{n}\right) \ll E^{2}\left(X_{n}\right)$, then $P\left(X_{n}=0\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. With $X=X_{n}$ and $t=\left|E\left(X_{n}\right)\right|$, Chebyshev's Inequality implies

$$
\begin{equation*}
P\left(\left|X_{n}-E\left(X_{n}\right)\right| \geq\left|E\left(X_{n}\right)\right|\right) \leq \frac{V\left(X_{n}\right)}{E^{2}\left(X_{n}\right)} \tag{*}
\end{equation*}
$$

Now when $X_{n}=0$ we have $\left.\left|X_{n}-E\left(X_{n}\right)\right|=\left|0-E\left(X_{n}\right)\right|=\mid E\left(X_{n}\right)\right) \mid$, and " $X_{n}=0$ " is included in values of X_{n} such that $\left|X_{n}-E\left(X_{n}\right)\right| \geq\left|E\left(X_{n}\right)\right|$. Hence, $P\left(X_{n}=0\right) \leq P\left(\left|X_{n}-E\left(X_{n}\right)\right| \geq\left|E\left(X_{n}\right)\right|\right)$ and so, by $(*)$, $P\left(X_{n}=0\right) \leq V(X) / E^{2}\left(X_{n}\right)$. The hypothesis $V\left(X_{n}\right) \ll E^{2}\left(X_{n}\right)$ means that $V\left(X_{n}\right) / E^{2}\left(X_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore (by the Sandwich Theorem, say) $P\left(X_{n}=0\right) \rightarrow 0$ as $n \rightarrow \infty$, as claimed.

Theorem 13.9

Theorem 13.9. Let $G \in \mathcal{G}_{n, 1 / 2}$. For $0 \leq k \leq n$, set $f(k)=\binom{n}{k} 2^{-\binom{k}{2}}$ and let k^{*} be the least value of k for which $f(k)$ is less than one. Then almost surely the stability number of $G, \alpha(G)$, takes one of the three values $k^{*}-2, k^{*}-1$, or k^{*}.

Proof. Let $G \in \mathcal{G}_{n, 1 / 2}$ and let $X \subset V$. Define X_{S} as the indicator random variable for the event A_{S} that S is a stable set in G. Set
$X=$ $\sum_{S \subseteq V,|S|=k}$

Theorem 13.9

Theorem 13.9. Let $G \in \mathcal{G}_{n, 1 / 2}$. For $0 \leq k \leq n$, set $f(k)=\binom{n}{k} 2^{-\binom{k}{2}}$ and let k^{*} be the least value of k for which $f(k)$ is less than one. Then almost surely the stability number of $G, \alpha(G)$, takes one of the three values $k^{*}-2, k^{*}-1$, or k^{*}.

Proof. Let $G \in \mathcal{G}_{n, 1 / 2}$ and let $X \subset V$. Define X_{S} as the indicator random variable for the event A_{S} that S is a stable set in G. Set $X=\sum_{S \subseteq V,|S|=k} X_{S}$ (so X is the number of stable sets of cardinality k in
$G)$. As shown in the proof of Theorem 13.6, $E(X)=\binom{n}{k} 2^{-\binom{k}{2} \text { (replace }}$ the $k+1$ in the proof of Theorem 13.6 with k here and take p of Theorem 13.6 as $1 / 2$ here), so we have $E(X)=f(k) \neq 0$ and, as is to be shown in Exercise 13.2.11(b), almost surely $\alpha(G) \leq k^{*}$. So if we show also that almost surely $\alpha(G) \geq k^{*}-2$, the result will follow.

Theorem 13.9

Theorem 13.9. Let $G \in \mathcal{G}_{n, 1 / 2}$. For $0 \leq k \leq n$, set $f(k)=\binom{n}{k} 2^{-\binom{k}{2}}$ and let k^{*} be the least value of k for which $f(k)$ is less than one. Then almost surely the stability number of $G, \alpha(G)$, takes one of the three values $k^{*}-2, k^{*}-1$, or k^{*}.

Proof. Let $G \in \mathcal{G}_{n, 1 / 2}$ and let $X \subset V$. Define X_{S} as the indicator random variable for the event A_{S} that S is a stable set in G. Set $X=\sum_{S \subseteq} X_{S}$ (so X is the number of stable sets of cardinality k in
$G)$. As shown in the proof of Theorem 13.6, $E(X)=\binom{n}{k} 2^{-\binom{k}{2}}$ (replace the $k+1$ in the proof of Theorem 13.6 with k here and take p of Theorem 13.6 as $1 / 2$ here), so we have $E(X)=f(k) \neq 0$ and, as is to be shown in Exercise 13.2.11(b), almost surely $\alpha(G) \leq k^{*}$. So if we show also that almost surely $\alpha(G) \geq k^{*}-2$, the result will follow.

Theorem 13.9 (continued 1)

Proof (continued). We set $k=k^{*}-2$ and show $V(X) \ll E^{2}(X)$. We can then apply Corollary 13.8 to conclude that $P(X=0) \rightarrow 0$ as $n \rightarrow \infty$. That is, G almost surely has a stable set of size $k=k^{*}-2$ and so almost surely $\alpha(G) \geq k^{*}-2$. Now we establish that fact that $V(X) \ll E^{2}(X)$.

By Exercise 13.2.11(b) we have for $k=k^{*}-2$ that

$$
\begin{equation*}
k<2 \log _{2} n \text { and } f(k) \geq n / 4 . \tag{13.9}
\end{equation*}
$$

It is to be shown in Exercise 13.3.1 that

$$
\begin{equation*}
V(X) \leq E(X)+\sum_{S \neq T} C\left(X_{S}, C_{T}\right) \tag{*}
\end{equation*}
$$

Let S and T be two sets of k vertices. If $|S \cap T| \in\{0,1\}$ then $C\left(X_{S}, X_{T}\right)=0$ since no edge of G has both ends in $S \cap T$ and the events of S and T being stable sets are independent so that $E\left(X_{S} X_{T}\right)=E\left(X_{S}\right) E\left(X_{T}\right)$.

Theorem 13.9 (continued 1)

Proof (continued). We set $k=k^{*}-2$ and show $V(X) \ll E^{2}(X)$. We can then apply Corollary 13.8 to conclude that $P(X=0) \rightarrow 0$ as $n \rightarrow \infty$. That is, G almost surely has a stable set of size $k=k^{*}-2$ and so almost surely $\alpha(G) \geq k^{*}-2$. Now we establish that fact that $V(X) \ll E^{2}(X)$.

By Exercise 13.2.11(b) we have for $k=k^{*}-2$ that

$$
\begin{equation*}
k<2 \log _{2} n \text { and } f(k) \geq n / 4 \tag{13.9}
\end{equation*}
$$

It is to be shown in Exercise 13.3.1 that

$$
\begin{equation*}
V(X) \leq E(X)+\sum_{S \neq T} C\left(X_{S}, C_{T}\right) \tag{*}
\end{equation*}
$$

Let S and T be two sets of k vertices. If $|S \cap T| \in\{0,1\}$ then $C\left(X_{S}, X_{T}\right)=0$ since no edge of G has both ends in $S \cap T$ and the events of S and T being stable sets are independent so that $E\left(X_{S} X_{T}\right)=E\left(X_{S}\right) E\left(X_{T}\right)$.

Theorem 13.9 (continued 2)

Proof (continued). If $|S \cap T|=i$ where $2 \leq i \leq k-1$ then, with \bar{A} denoting the complement of event A,

$$
C\left(X_{S}, X_{T}\right)=E\left(X_{S} X_{T}\right)-E\left(X_{S}\right) E\left(X_{T}\right) \leq E\left(X_{S} X_{T}\right)
$$

$=0 P\left(\bar{A}_{S} \cap \bar{A}_{T}\right)+0 P\left(A_{S} \cap \bar{A}_{T}\right)+0 P\left(\bar{A}_{S} \cap A_{T}\right)+1 P\left(A_{S} \cap A_{T}\right)=P\left(A_{S} \cap A_{T}\right) .(* *)$ Now in event A_{S}, S is a stable set if G contains none of the possible $\binom{k}{2}$ edges with both ends in S, and since $p=1 / 2$ then $P\left(A_{S}\right)=\left(\frac{1}{2}\right)^{\binom{k}{2}}$ Similarly, $P\left(A_{T}\right)=\left(\frac{1}{2}\right)^{\binom{k}{2}}$. Now both A_{S} and A_{T} are stable sets if G contains none of the possible edges with either (1) both ends in S, or (2) both ends in T. When $|S \cap T|=i$, this involves a total of $2\binom{k}{2}-\binom{i}{2}$ edges so that

$$
P\left(A_{S} \cap A_{T}\right)=\left(\frac{1}{2}\right)^{2\binom{k}{2}-\binom{i}{2}}=2^{\binom{i}{2}-2\binom{k}{2}} .
$$

Theorem 13.9 (continued 2)

Proof (continued). If $|S \cap T|=i$ where $2 \leq i \leq k-1$ then, with \bar{A} denoting the complement of event A,

$$
C\left(X_{S}, X_{T}\right)=E\left(X_{S} X_{T}\right)-E\left(X_{S}\right) E\left(X_{T}\right) \leq E\left(X_{S} X_{T}\right)
$$

$=0 P\left(\bar{A}_{S} \cap \bar{A}_{T}\right)+0 P\left(A_{S} \cap \bar{A}_{T}\right)+0 P\left(\bar{A}_{S} \cap A_{T}\right)+1 P\left(A_{S} \cap A_{T}\right)=P\left(A_{S} \cap A_{T}\right) .(* *)$
Now in event A_{S}, S is a stable set if G contains none of the possible $\binom{k}{2}$ edges with both ends in S, and since $p=1 / 2$ then $P\left(A_{S}\right)=\left(\frac{1}{2}\right)^{\binom{k}{2} \text {. }}$ Similarly, $P\left(A_{T}\right)=\left(\frac{1}{2}\right)^{\binom{k}{2}}$. Now both A_{S} and A_{T} are stable sets if G contains none of the possible edges with either (1) both ends in S, or (2) both ends in T. When $|S \cap T|=i$, this involves a total of $2\binom{k}{2}-\binom{i}{2}$ edges so that

$$
P\left(A_{S} \cap A_{T}\right)=\left(\frac{1}{2}\right)^{2\binom{k}{2}-\binom{i}{2}}=2^{\binom{i}{2}-2\binom{k}{2}} .
$$

Theorem 13.9 (continued 3)

Proof (continued). We now count the number of choices of S and T. First, there are $\binom{n}{k}$ choices for S, then $\binom{k}{i}$ choices for $S \cap T$, and finally $\binom{n-k}{k-i}$ choices for the vertices in $T \backslash S$. So there are $\binom{n}{k}\binom{k}{i}\binom{n-k}{k-i}$ choices for S and T. Then

$$
\begin{aligned}
V(X) & \leq E(X)+\sum_{S \neq T} C\left(X_{S}, X_{T}\right) \text { by }(*) \\
& \leq E(X)+\sum_{S \neq T} P\left(A_{S} \cap A_{T}\right) \text { by }(* *) \\
& =E(X)+\sum_{i=2}^{k-1}\binom{n}{k}\binom{k}{i}\binom{n-k}{k-i} 2\binom{i}{2}-2\binom{k}{2} .
\end{aligned}
$$

Now $E(X)=\binom{n}{k} 2^{-\binom{k}{2}} \ll E^{2}(X)=\binom{n}{k}^{2} 2^{-2\binom{k}{2}}$ since

Theorem 13.9 (continued 3)

Proof (continued). We now count the number of choices of S and T. First, there are $\binom{n}{k}$ choices for S, then $\binom{k}{i}$ choices for $S \cap T$, and finally $\binom{n-k}{k-i}$ choices for the vertices in $T \backslash S$. So there are $\binom{n}{k}\binom{k}{i}\binom{n-k}{k-i}$ choices for S and T. Then

$$
\begin{aligned}
V(X) & \leq E(X)+\sum_{S \neq T} C\left(X_{S}, X_{T}\right) \text { by }(*) \\
& \leq E(X)+\sum_{S \neq T} P\left(A_{S} \cap A_{T}\right) \text { by }(* *) \\
& =E(X)+\sum_{i=2}^{k-1}\binom{n}{k}\binom{k}{i}\binom{n-k}{k-i} 2\left(\begin{array}{c}
\binom{i}{2}-2\binom{k}{2} .
\end{array}\right.
\end{aligned}
$$

Now $E(X)=\binom{n}{k} 2^{-\binom{k}{2}} \ll E^{2}(X)=\binom{n}{k}^{2} 2^{-2\binom{k}{2} \text { since }}$

$$
\frac{E(X)}{E^{2}(X)}=\frac{1}{\left(\begin{array}{l}
n \\
k
\end{array} 2^{-\binom{k}{2}}\right.}=\frac{2^{\binom{k}{2}}}{\binom{n}{k}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Theorem 13.9 (continued 4)

Proof (continued). So it remains to show that

$$
\sum_{i=2}^{k-1}\binom{n}{k}\binom{k}{i}\binom{n-k}{k-i} 2^{\binom{i}{2}-2\binom{k}{2}} \ll E^{2}(X)=\binom{n}{k}^{2} 2^{-2\binom{k}{2}}
$$

or equivalently that

$$
\begin{equation*}
\binom{n}{k}^{-1} \sum_{i=2}^{k-1} g(i) \rightarrow 0 \text { as } n \rightarrow \infty \tag{13.10}
\end{equation*}
$$

where $g(i)=\binom{k}{i}\binom{n-k}{k-i} 2\binom{i}{2}$. We have

$$
g(2)=\binom{k}{2}\binom{n-k}{k-2} 2=k(k-1)\binom{n-k}{k-2}<k^{2}\binom{n}{k-2} .
$$

Theorem 13.9 (continued 5)

Proof (continued). For $2 \leq i \leq k-2$,

$$
\begin{aligned}
\frac{g(i+1)}{g(i)}= & \frac{\binom{k}{i+1}\binom{n-k}{k-i-1} 2^{\binom{i+1}{2}}}{\binom{k}{i}\binom{n-k}{k-i} 2^{i}\binom{i}{2}} \\
= & \frac{\frac{k!}{(i+1)!(k-i-1)!} \frac{(n-k)!}{(k-i-1)!(n-2 k+i+1)!}}{\frac{k!}{i!(k-i)!} \frac{(n-k)!}{(k-i)!(n-2 k+i)!}} \frac{2^{(i+1) i / 2}}{2^{i(i-1) / 2}} \\
= & \frac{(k-i)}{(i+1)} \frac{(k-i)}{(n-2 k+i+1)} 2^{i}<\frac{k^{2} 2^{i}}{i(n-2 k)} \text { since } i+1>i \\
& \quad \text { and } n-2 k+i+1>n-2 k .
\end{aligned}
$$

Set $t=\left\lfloor c \log _{2} n\right\rfloor$ where $0<c<1$. Observe that $f(x)=2^{x} / x$ is an increasing function for $x>1 / \ln 2 \approx 1.44$.

Theorem 13.9 (continued 5)

Proof (continued). For $2 \leq i \leq k-2$,

$$
\begin{aligned}
\frac{g(i+1)}{g(i)}= & \frac{\binom{k}{i+1}\binom{n-k}{k-i-1} 2^{\binom{i+1}{2}}}{\binom{k}{i}\binom{n-k}{k-i} 2^{i}\binom{i}{2}} \\
= & \frac{\frac{(i+1)!(k-i-1)!}{(k-i-1)!(n-2 k+i+1)!}}{\frac{k!}{i!(k-i)!} \frac{(n-k)!}{(k-i)!(n-2 k+i)!}} \frac{2^{(i+1) i / 2}}{2^{i(i-1) / 2}} \\
= & \frac{(k-i)}{(i+1)} \frac{(k-i)}{(n-2 k+i+1)} 2^{i}<\frac{k^{2} 2^{i}}{i(n-2 k)} \text { since } i+1>i \\
& \quad \text { and } n-2 k+i+1>n-2 k .
\end{aligned}
$$

Set $t=\left\lfloor c \log _{2} n\right\rfloor$ where $0<c<1$. Observe that $f(x)=2^{x} / x$ is an increasing function for $x>1 / \ln 2 \approx 1.44$.

Theorem 13.9 (continued 6)

Proof (continued). Then for $2 \leq i \leq t-1$ we have

$$
\begin{aligned}
\frac{g(i+1)}{g(i)}< & \left(\frac{2^{i}}{i}\right)\left(\frac{k^{2}}{n-2 k}\right) \text { as just shown } \\
\leq & \left(\frac{2^{t}}{t}\right)\left(\frac{k^{2}}{n-2 k}\right) \text { since } 2^{x} / x \text { is increasing and } i \leq t-1<t \\
< & \left(\frac{n^{c}}{c \log _{2} n}\right)\left(\frac{\left(2 \log _{2} n\right)^{2}}{n-4 \log _{2} n}\right) \text { since } 2^{x} / x \text { is increasing and } \\
& t=\left\lfloor c \log _{2} n\right\rfloor \leq c \log _{2} n, \text { and } k<2 \log _{2} n \text { by }(13.9) \\
= & \frac{4 n^{c} \log _{2} n}{c\left(n-4 \log _{2} n\right)} .
\end{aligned}
$$

Now $\frac{4 n^{c} \log _{2} n}{c\left(n-4 \log _{2} n\right)} \rightarrow 0$ so for n sufficiently large $\frac{4 n^{c} \log _{2} n}{c\left(n-4 \log _{2} n\right)} \leq 1$,
and hence $\frac{g(i+1)}{g(i)} \leq 1$. That is, for $2 \leq i \leq t-1$ and n sufficiently large, $g(i+1) \leq g(i)$. Therefore $g(t) \leq g(t-1) \leq \cdots \leq g(2)$.

Theorem 13.9 (continued 6)

Proof (continued). Then for $2 \leq i \leq t-1$ we have

$$
\begin{aligned}
\frac{g(i+1)}{g(i)}< & \left(\frac{2^{i}}{i}\right)\left(\frac{k^{2}}{n-2 k}\right) \text { as just shown } \\
\leq & \left(\frac{2^{t}}{t}\right)\left(\frac{k^{2}}{n-2 k}\right) \text { since } 2^{x} / x \text { is increasing and } i \leq t-1<t \\
< & \left(\frac{n^{c}}{c \log _{2} n}\right)\left(\frac{\left(2 \log _{2} n\right)^{2}}{n-4 \log _{2} n}\right) \text { since } 2^{x} / x \text { is increasing and } \\
& t=\left\lfloor c \log _{2} n\right\rfloor \leq c \log _{2} n, \text { and } k<2 \log _{2} n \text { by (13.9) } \\
= & \frac{4 n^{c} \log _{2} n}{c\left(n-4 \log _{2} n\right)} .
\end{aligned}
$$

Now $\frac{4 n^{c} \log _{2} n}{c\left(n-4 \log _{2} n\right)} \rightarrow 0$ so for n sufficiently large $\frac{4 n^{c} \log _{2} n}{c\left(n-4 \log _{2} n\right)} \leq 1$,
and hence $\frac{g(i+1)}{g(i)} \leq 1$. That is, for $2 \leq i \leq t-1$ and n sufficiently large, $g(i+1) \leq g(i)$. Therefore $g(t) \leq g(t-1) \leq \cdots \leq g(2)$.

Theorem 13.9 (continued 7)

Proof (continued). So

$$
\begin{align*}
& \binom{n}{k}^{-1} \sum_{i=2}^{t} g(i) \leq\binom{ n}{k}^{-1} \operatorname{tg}(2)<\binom{n}{k}^{-1} t k^{2}\binom{n}{k-2} \\
= & \frac{k!(n-k)!}{n!} t k^{2} \frac{n!}{(k-2)!(n-k+2)!}=\frac{t k^{2} k(k-1)}{(n-k+2)(n-k+1)} \\
= & \frac{t k^{4}-t k^{3}}{n^{2}-n(k-1)-n(k-2)+(k-2)(k-1)} \\
= & \frac{t k^{4}-t k^{3}}{n^{2}-n(2 k-3)+(k-2)(k-1)} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{13.11}
\end{align*}
$$

In equation (13.10) we consider $\sum_{t=2}^{k-1} g(i)$, so we now need to address the values of i of $t+1, t+2, \ldots, k-1$.

Theorem 13.9 (continued 8)

Proof (continued). ... we now need to address the values of i of $t+1, t+2, \ldots, k-1$. We have

$$
\begin{aligned}
\sum_{i=t+1}^{k-1} g(i)= & \sum_{i=t+1}^{k-1}\binom{k}{i}\binom{n-k}{k-i} 2^{\binom{i}{2}} \\
= & 2^{\binom{k}{2}} \sum_{i=t+1}^{k-1}\binom{k}{k-i}\binom{n-k}{k-i} 2^{\binom{i}{2}-\binom{k}{2}} \text { since }\binom{k}{i}=\binom{k}{k-i} \\
= & 2^{\binom{k}{2}} \sum_{i=t+1}^{k-1}\binom{k}{k-i}\binom{n-k}{k-i} 2^{-(k-i)(k+i-1) / 2} \text { since } \\
& \binom{i}{2}-\binom{k}{2}=\frac{i(i-1)}{2}-\frac{k(k-1)}{2}=\frac{i^{2}-i-k^{2}+k}{2} \\
= & \frac{-k(k-i)-k(i-1)+i(i-1)}{2} \ldots
\end{aligned}
$$

Theorem 13.9 (continued 9)

Proof (continued). ...

$$
\begin{aligned}
\sum_{i=t+1}^{k-1} g(i)= & 2\binom{k}{2} \sum_{i=t+1}^{k-1}\binom{k}{k-i}\binom{n-k}{k-i} 2^{-(k-i)(k+i-1) / 2} \text { since } \\
& \binom{i}{2}-\binom{k}{2}=\cdots=\frac{-k(k-i)-(k-i)(i-1)}{2} \\
= & \frac{-(k-1)(k+i-1)}{2} \\
= & 2\binom{k}{2} \sum_{j=1}^{k-t-1}\binom{k}{j}\binom{n-k}{j} 2^{-j(2 k-j-1) / 2} \text { by letting } j=i-t
\end{aligned}
$$

and when i ranges from $t+1$ to $k-1$ then j ranges from 1 to $k-t-1$, respectively, and $k-i$ ranges from $k-t-1$ to 1 , respectively; also replacing j with $k-i$ in $2 k-j-1$ gives $2 k-(k-i)-1=k+i-1$, as given

Theorem 13.9 (continued 10)

Proof (continued). ...

$$
\begin{align*}
\sum_{i=t+1}^{k-1} g(i)= & 2^{\binom{k}{2}} \sum_{j=1}^{k-t-1}\binom{k}{j}\binom{n-k}{j} 2^{-j(2 k-j-1) / 2} \\
= & 2^{\binom{k}{2}} \sum_{j=1}^{k-t-1} \frac{k!}{j!(k-j)!} \frac{(n-k)!}{j!(n-k-j)!}\left(2^{-(2 k-j-1) / 2}\right)^{j} \\
< & 2^{\binom{k}{2}} \sum_{j=1}^{k-t-1} \frac{k!}{(k-j)!} \frac{(n-k)!}{(n-k-j)!}\left(2^{-(k+t) / 2}\right)^{j} \text { since for } \\
& 1 \leq j \leq k-t-1 \text { we have } \\
& 2 k-j-1 \geq 2 k-(k-t-1)-1=k+t \\
< & 2^{\binom{k}{2}} \sum_{j=1}^{k-t-1}\left(k(n-k) 2^{-(k+t) / 2}\right)^{j} . \quad(\dagger \dagger)
\end{align*}
$$

Theorem 13.9 (continued 11)

Proof (continued). To bound this last term, we use the fact that $k^{*}+\log _{2} k^{*}-1 \geq 2 \log _{2} n$, as is to be shown in Exercise 13.2.11(a). This implies $2^{k^{*}+\log _{2} k^{*}-1} \geq 2^{2 \log _{2} n}$ or $2^{k^{*}} k^{*} 2^{-1} \geq n^{2}$ or $2^{k^{*} / 2} \sqrt{k^{*}} 1 / \sqrt{2} \geq n$ or $2^{-k^{*} / 2} \leq \sqrt{k^{*} / 2} n^{-1}$ or $2^{-(k+2) / 2} \leq \sqrt{(k+2) / 2} n^{-1}$ (since $k=k^{*}-2$) or $2^{-k / 2} \leq 2 \sqrt{(k+2) / 2} n^{-1}=\sqrt{2 k+4} n^{-1}$. So for n sufficiently large

$$
\begin{aligned}
k(n-k) 2^{-(k+t) / 2} \leq & k(n-k) \sqrt{2 k+4} n^{-1} 2^{-t / 2} \\
< & k(n-k) \sqrt{2 k+4} n^{-1} \sqrt{2} n^{-c / 2} \\
& \text { since } t=\left\lfloor c \log _{2} n\right\rfloor>\left(c \log _{2} n\right)-1 \text { and so } \\
& 2^{t}>2^{\left(c \log _{2} n\right)-1}=n^{c} / 2 \text { or } 2^{-t / 2}<\sqrt{2} n^{-c / 2} \\
= & k \sqrt{4 k+8}\left(1-\frac{k}{n}\right) n^{-c / 2} \leq 1
\end{aligned}
$$

for n sufficiently large (since this quantity goes to 0 as $n \rightarrow \infty$). (This differs slightly from the book's computations. . . the book may have a small error in it here.)

Theorem 13.9 (continued 11)

Proof (continued). To bound this last term, we use the fact that $k^{*}+\log _{2} k^{*}-1 \geq 2 \log _{2} n$, as is to be shown in Exercise 13.2.11(a). This implies $2^{k^{*}+\log _{2} k^{*}-1} \geq 2^{2 \log _{2} n}$ or $2^{k^{*}} k^{*} 2^{-1} \geq n^{2}$ or $2^{k^{*} / 2} \sqrt{k^{*}} 1 / \sqrt{2} \geq n$ or $2^{-k^{*} / 2} \leq \sqrt{k^{*} / 2} n^{-1}$ or $2^{-(k+2) / 2} \leq \sqrt{(k+2) / 2} n^{-1}$ (since $k=k^{*}-2$) or $2^{-k / 2} \leq 2 \sqrt{(k+2) / 2} n^{-1}=\sqrt{2 k+4} n^{-1}$. So for n sufficiently large

$$
\begin{aligned}
k(n-k) 2^{-(k+t) / 2} \leq & k(n-k) \sqrt{2 k+4} n^{-1} 2^{-t / 2} \\
< & k(n-k) \sqrt{2 k+4} n^{-1} \sqrt{2} n^{-c / 2} \\
& \text { since } t=\left\lfloor c \log _{2} n\right\rfloor>\left(c \log _{2} n\right)-1 \text { and so } \\
& 2^{t}>2^{\left(c \log _{2} n\right)-1}=n^{c} / 2 \text { or } 2^{-t / 2}<\sqrt{2} n^{-c / 2} \\
= & k \sqrt{4 k+8}\left(1-\frac{k}{n}\right) n^{-c / 2} \leq 1
\end{aligned}
$$

for n sufficiently large (since this quantity goes to 0 as $n \rightarrow \infty$). (This differs slightly from the book's computations. . . the book may have a small error in it here.)

Theorem 13.9 (continued 12)

Proof (continued). So from ($\dagger \dagger$), for n sufficiently large,

From equation (13.9) we have $f(k)=\binom{n}{k} 2^{-\binom{k}{n}} \geq n / 4$, so we now have

$$
\begin{aligned}
& \binom{n}{k}^{-1} \sum_{i=t+1}^{k-1} g(i)<\binom{n}{k}^{-1} 2^{\binom{k}{2}}(k-t-1) \\
& =\frac{k-t-1}{f(k)} \leq \frac{k-t-1}{n / 4}=\frac{4(k-t-1)}{n}
\end{aligned}
$$

and as $n \rightarrow \infty$ we see that

$$
\begin{equation*}
\binom{n}{k}^{-1} \sum_{i=t+1}^{k-1} g(i) \rightarrow 0 \text { as } n \rightarrow \infty \tag{13.12}
\end{equation*}
$$

Theorem 13.9 (continued 13)

Theorem 13.9. Let $G \in \mathcal{G}_{n, 1 / 2}$. For $0 \leq k \leq n$, set $f(k)=\binom{n}{k} 2^{-\binom{k}{2}}$ and let k^{*} be the least value of k for which $f(k)$ is less than one. Then almost surely the stability number of $G, \alpha(G)$, takes one of the three values $k^{*}-2, k^{*}-1$, or k^{*}.

Proof (continued). Combining (13.11) and (13.12) we have (13.10):

$$
\binom{n}{k}^{-1} \sum_{i=2}^{k-1} g(i) \rightarrow 0 \text { as } n \rightarrow \infty
$$

As described above, this is sufficient to establish the claim.

