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Theorem 13.7

Theorem 13.7. CHEBYSHEV’S INEQUALITY.
Let X be a random variable on a finite probability space and let t > 0.
Then
V(X)
t2

P(IX - E(X)[=1) <
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Theorem 13.7. Chebyshev’s Inequality

Theorem 13.7

Theorem 13.7. CHEBYSHEV’S INEQUALITY.

Let X be a random variable on a finite probability space and let t > 0.
Then

V(X)

PIX - E(OI 2 1)< 25

Proof. We have

PIX —EMX)|>1) = P((X-E(X))*=>t)
E((X — E(X))*)

< 2 by Markov's Inequality
(Proposition 13.4)
_ V(X)
= et
as claimed. ]
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Corollary 13.8

Corollary 13.8

Corollary 13.8. Let X, be a random variable in a finite probability space

(Qn, Pn) where n > 1. If E(X,) # 0 and V(X,) < E?(X,), then
P(X,=0) — 0as n— oo.
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Corollary 13.8

Corollary 13.8

Corollary 13.8. Let X, be a random variable in a finite probability space

(Qn, Pn) where n > 1. If E(X,) # 0 and V(X,) < E?(X,), then
P(X,=0) — 0as n— oo.

Proof. With X = X, and t = |[E(X,)|,

PX — ECG)I = ECD) < oy ()

Now when X, = 0 we have | X, — E(X,)| =10 — E(X,)| = | ),
“Xn, = 0" is included in values of X, such that |X, — E(X,)| > |E(X,)].

Graph Theory March 18, 2021 4 /18



Corollary 13.8

Corollary 13.8. Let X, be a random variable in a finite probability space
(Qn, Pn) where n > 1. If E(X,) # 0 and V(X,) < E?(X,), then
P(X,=0) — 0as n— oo.

Proof. With X = X, and t = |E(X,)

, Chebyshev's Inequality implies

V(Xn)
P(1Xn — E(Xa)| = |E(Xn)|) < E2(X,)’ (%)

Now when X, = 0 we have | X, — E(X,)| = |0 — E(X,)| = |E(X4))|, and
“Xn = 0" is included in values of X, such that | X, — E(X,)| > |E(Xh)|.
Hence, P(X, = 0) < P(| X, — E(X,)| > |E(Xn)]) and so, by (x),

P(X, =0) < V(X)/E?(X,). The hypothesis V(X,) < E?(X,) means
that V(X,)/E?(X,) — 0 as n — oo. Therefore (by the Sandwich
Theorem, say) P(X, =0) — 0 as n — oo, as claimed. O
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Theorem 13.9

Theorem 13.9. Let G € G, 1/5. For 0 < k < n, set f(k) = (Z) 2=(5)

and let k* be the least value of k for which f(k) is less than one. Then
almost surely the stability number of G, a(G), takes one of the three
values k* — 2, k* — 1, or k*.
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Theorem 13.9

Theorem 13.9. Let G € G, 1/5. For 0 < k < n, set f(k) = (Z) 2=(5)

and let k* be the least value of k for which f(k) is less than one. Then
almost surely the stability number of G, a(G), takes one of the three
values k* — 2, k* — 1, or k*.

Proof. Let G € G, 1/, and let X C V. Define Xs as the indicator random

variable for the event As that S is a stable set in G. Set

X = Z Xs (so X is the number of stable sets of cardinality k in
SCV,|S|=k

G).
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Theorem 13.9

Theorem 13.9. Let G € G, 1/5. For 0 < k < n, set f(k) = (Z) 2=(5)
and let k* be the least value of k for which f(k) is less than one. Then
almost surely the stability number of G, a(G), takes one of the three
values k* — 2, k* — 1, or k*.

Proof. Let G € G,,1/> and let X C V. Define Xs as the indicator random
variable for the event As that S is a stable set in G. Set
X = Z Xs (so X is the number of stable sets of cardinality k in

SCV,|S|=k
G). As shown in the proof of Theorem 13.6, E(X) = Z 2-(2) (replace

the k+ 1 in the proof of Theorem 13.6 with k here and take p of Theorem
13.6 as 1/2 here), so we have E(X) = f(k) # 0 and, as is to be shown in
Exercise 13.2.11(b), almost surely a(G) < k*. So if we show also that
almost surely a(G) > k* — 2, the result will follow.
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Theorem 13.9

Theorem 13.9 (continued 1)
Proof (continued). We set k = k* — 2 and show V/(X) < E?(X). We
can then apply Corollary 13.8 to conclude that P(X = 0) — 0 as n — oc.

That is, G almost surely has a stable set of size k = k* — 2 and so almost
surely a(G) > k* — 2. Now we establish that fact that V(X) < E?(X).
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Theorem 13.9 (continued 1)

Proof (continued). We set k = k* — 2 and show V/(X) < E?(X). We
can then apply Corollary 13.8 to conclude that P(X = 0) — 0 as n — oc.
That is, G almost surely has a stable set of size k = k* — 2 and so almost
surely a(G) > k* — 2. Now we establish that fact that V(X) < E?(X).

By Exercise 13.2.11(b) we have for k = k* — 2 that
k < 2logy n and f(k) > n/4. (13.9)
It is to be shown in Exercise 13.3.1 that

V(X) S E(X)+ ) C(Xs,Cr). (%)
S#AT

Let S and T be two sets of k vertices. If |SN T| € {0,1} then
C(Xs, X71) = 0 since no edge of G has both ends in SN T and the events
of S and T being stable sets are independent so that
E(XsXt) = E(Xs)E(XT).
Graph Theory March 18,2021 6 / 18



Theorem 13.9 (continued 2)

Proof (continued). If [SN T| =i where 2 < i < k — 1 then, with A
denoting the complement of event A,

C(Xs, X7) = E(XsX1) — E(X5)E(XT) < E(XsXT)
= 0P(ZSQZT)+0P(A5ﬂZT)+OP(Z5ﬂAT)—l—lP(AsﬁAT) = P(AsNAT). (*x)
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Theorem 13.9 (continued 2)

Proof (continued). If [SN T| =i where 2 < i < k — 1 then, with A
denoting the complement of event A,

C(Xs, X7) = E(XsX1) — E(X5)E(XT) < E(XsXT)
= 0P(AsNAT)+0P(AsNAT)+0P(AsNAT)+1P(AsNAT) = P(AsNAT). ()
Now in event Ag, S is a stable set if G contains none of the possible (12‘)
edges with both ends in S, and since p = 1/2 then P(As) = (%)(S)

Similarly, P(AT) = (%)(S) Now both As and At are stable sets if G
contains none of the possible edges with either (1) both ends in S, or (2)
both ends in T. When |S N T| =/, this involves a total of 2(’2‘) - (é)
edges so that

ptasnan - (3) 7 -0

Graph Theory March 18, 2021 7 /18



Theorem 13.9 (continued 3)

Proof (continued). We now count the number of choices of S and T.

First, there are (}) choices for S, then (If) choices for SN T, and finally

]S’,l__? chdoic;_es_lf_(l)qr the vertices in T\ S. So there are (}) (lf) (’;(__’f) choices
or S and T. Then

V(X) < E(X)+ ) C(Xs,X7) by (%)
ST

< E(XX)+ ) P(AsNAT) by (xx)
S#£T

— EX)+ Z (D) (62020
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Theorem 13.9 (continued 3)

Proof (continued). We now count the number of choices of S and T.

First, there are (}) choices for S, then (If) choices for SN T, and finally

]S’,l__? chdoic;_es_lf_(l)qr the vertices in T\ S. So there are (}) (lf) (’;(__’f) choices
or S and T. Then

V(X) < E(X)+ ) C(Xs,X7) by (%)
ST

< E(XX)+ ) P(AsNAT) by (xx)
S#£T

— EX)+ z (D) (62020

Now E(X) = (1)2-() <« E2(X) = (1)*272() since
E(X): 1 :2(5)—>Oasn—>oo

2
E2(X) (2= (R)
Graph Theory March 18, 2021 8 /18




Theorem 13.9 (continued 4)

Proof (continued). So it remains to show that

5 (1)) 3800 <0~ ()0

i=2

or equivalently that

<Z>1§g(’) —0asn—oo  (13.10)

where g(i) = (’,‘) (’]:_11‘)2(9 We have

- ()22 -a(3 ) (")
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Theorem 13.9 (continued 5)

Proof (continued). For 2 << k—2,

. k n—k i1
g(i+1) _ (1) (kfifl)z'( )
g(l) (5) (5420
L4 (n—k)! (i+1)i/2
 (FDk=i—1)1 (k—i—1){(n—2k+i+1)! 2
= X (n—k)! 2i(—1)/2
(k=) (k=i)I(n—2k+7)!
(k — i) (k — i) ; k221

_ , i
(1) (n—2k+itD)° “i(n—ok) e/t i=t

and n—2k+i+1>n-2k.
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Theorem 13.9 (continued 5)

Proof (continued). For 2 << k—2,

. k n—k i1
g(i+1) _ (1) (kfifl)z'( )
() (974920
Kl (n—k)! (i+1)i/2
 (FDk=i—1)1 (k—i—1){(n—2k+i+1)! 2
- Kl (n—k)! i(i—1)/2
(k=) (k=i)I(n—2k+7)!
_ i _ 2ni
= (k=17) (k=) 2' < k2 since i +1>

(i+1)(n—2k+i+1) i(n—2k)
and n —2k+i+1>n—2k.

Set t = |[clog, n| where 0 < ¢ < 1. Observe that f(x) = 2¥/x is an
increasing function for x > 1/In2 ~ 1.44.
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Theorem 13.9 (continued 6)

Proof (continued). Then for 2 </ <t — 1 we have

i+ 1 2! k2
g(l(—ij)) < <> < 2k> as just shown
g(i i n—
2! k?
<) ( ) since 2¥/x is increasing and i <t —1<t

- t n— 2k
< < n ) ( (2log; n)* ) since 2% /x is increasing and
clog, n n—4logyn
t = |clogy n] < clog, n, and k < 2log, n by (13.9)
B 4n€log, n
~ c(n—4logyn)’
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Theorem 13.9 (continued 6)

Proof (continued). Then for 2 </ <t — 1 we have

i+ 1 2! k2
g(l(—ij)) < <> < 2k> as just shown
g(i i n—
2! k?
<) ( ) since 2¥/x is increasing and i <t —1<t

t n— 2k
c 2] 2
< ! (2log, n) since 2% /x is increasing and
clog, n n—4logyn
t = |clogy n] < clog, n, and k < 2log, n by (13.9)
4n€log, n

c(n—4logyn)

4n°log, n 4nclog, n

Now — 0 so for n sufficiently large

c(n — 4log, n) c(n —4log, n)

i+ 1
8ULD) 1 Thatis, for 2 <7< t—1and n sufficiently

g(i
large, g(i 4+ 1) < g(i). Therefore g(t) < g(t—1) <--- < g(2).
Graph Theory March 18, 2021 11 /18
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Theorem 13.9

Theorem 13.9 (continued 7)

Proof (continued). So

(:)1 ,.Z;g(") < (Z)lrg(z) < (Z)lrkz(k "))

kY (n—k)! 2 n! _ tk’k(k — 1)
B n! (k—2)(n—k+2)!  (n—k+2)(n—k+1)
_ tk* — tk3
 m—nlk—1)—n(k—2)+ (k—2)(k—1)
th* — th3
0 . 13.11
k=3t k—2)k—1) C¥n—oe (131
k-1
In equation (13.10) we consider Zg(i), so we now need to address the
t=2

valuesof iof t+1,t+2,..., k— 1.

Graph Theory
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Theorem 13.9 (continued 8)

Proof (continued). ...we now need to address the values of i of
t+1,t+2,...,k—1. We have

i—t+ ]
— 2(2) .kll (k li ,-) (Z:é)z(é)_(;) since (f) = (k l: ,')

I=t+
L0 k-1 (kk > <Ilv(— 6)2_(k_;)(k+i—1)/2 since
— 1 — 1
i=t+1
i K\ _i(i—1) k(k—1) i2—i—k +k
<2> a 2) 22 2
 —k(k—i)— k(i — 1) +i(i — 1)
2

Graph Theory March 18, 2021 13 /18



Theorem 13.9 (continued 9)

Proof (continued). ...

k—1 . k—1 K n—k ) )
S a() = 20 % (k—i)(k—i>2_(k_’)(k+l_1)/2 since
i=t+1

i=t+1 i=t
N (K k(=) - (k= )i 1)
DS
2
= 203) k;zt;l (j) (n ; k> 2 J(2k=i=1)/2 by letting j =i — t

and when i ranges from t 4+ 1 to k — 1 then j ranges from

1to k—t—1, respectively, and k — i ranges from

k —t—1 to 1, respectively; also replacing j with kK —/ in

2k —j—1gives2k — (k—i)—1=k+i—1, as given
Graph Theory March 18, 2021 14 / 18



Theorem 13.9 (continued 10)

Proof (continued). ...

kzzl g(i) = 2(2) Z ( >< >2 —j(2k—j—1)/2

k—t—1 kl n— k) P .
= 20) Z !(,S—kzj)! (27 1)/2>J

2(k) ki:l k! (n — k)' (2—(k+t)/2)‘j . f
< 2 ; - since for
= (k=) —k—j)!
1<j<k—t—1we have
2k —j—1>2k—(k—t—-1)—1=k+t
k—t—1

< 26 3 <k(n—k)2_(k+t)/2>j. (1)

j=1

Graph Theory March 18, 2021 15 /18



Theorem 13.9 (continued 11)

Proof (continued). To bound this last term, we use the fact that

k* + logy k* —1 > 2log, n, as is to be shown in Exercise 13.2.11(a). This
implies 2K Hlog2 k"=1 > p2logan o DK™ jxp=1 > 2 or 2K"/2\/k*1/1/2 > n or
2-K2 <\ Jk*j2n~1 or 2= (k42)/2 <\ /(k +2)/2n71 (since k = k* —2) or
27k/2 <2\ /(k+2)/2n"t = \/2k + 4n~ 1.
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Theorem 13.9 (continued 11)

Proof (continued). To bound this last term, we use the fact that

k* + logy k* —1 > 2log, n, as is to be shown in Exercise 13.2.11(a). This
implies 2K Hlog2 k"=1 > p2logan o DK™ jxp=1 > 2 or 2K"/2\/k*1/1/2 > n or
2-K2 <\ Jk*j2n~1 or 2= (k42)/2 <\ /(k +2)/2n71 (since k = k* —2) or
27K2 <2, /(k+2)/2n"t = \/2k + 4n~1. So for n sufficiently large

k(n— k)2~ 02 < k(n— k)V2k + 4n127t/2
< k(n—k)V2k +4n~1y/2p=c/?

since t = |clog, n| > (clog, n) — 1 and so
2t > 2(clom2n =1 — ¢ /2 or 2712 < \/2n~/2

k
kv/4k + 8 (1 — ) n—? <1
n

for n sufficiently large (since this quantity goes to 0 as n — oo). (This
differs slightly from the book’s computations. .. the book may have a small
error in it here.)

Graph Theory March 18, 2021 16 / 18
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Theorem 13.9 (continued 12)

Proof (continued). So from (ft), for n sufficiently large,

k—1 k t—1 k t—1
Z ) < 2 Z ( k)2~ (k+t)/2> < 2 Z
i=t+1 j=1 j=1

= 20) (k—t-1).

From equation (13.9) we have f(k) = <Z>2_(ﬁ) > n/4, so we now have

<Z>_l kz_:l g(i) < <Z> _12(5)(k o)

i=t+1
k—t—1 < k—t—1 4k—t—1)
f(ky — n/4 n
and as n — oo we see that

<Z>_1 S g(i) = 0asn—oo.  (1312)

i=t+1

Graph Theory March 18, 2021
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Theorem 13.9 (continued 13)

n k

Theorem 13.9. Let G € G, 1/5. For 0 < k < n, set f(k) = <k> 2-(3)

and let k* be the least value of k for which f(k) is less than one. Then
almost surely the stability number of G, «a(G), takes one of the three
values k* — 2, k* — 1, or k*.

Proof (continued). Combining (13.11) and (13.12) we have (13.10):

n —1 k-1
<k> Zg(i)—>Oasn—>oo.
i=2

As described above, this is sufficient to establish the claim. O
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