Graph Theory

Chapter 13. The Probabilistic Method 13.4. Evolution of Random Graphs—Proofs of Theorems

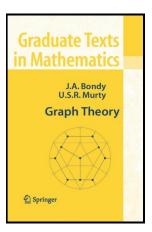


Table of contents

Theorem 13.11

Theorem 13.11. Let F be a nonempty balanced graph with k vertices and l edges. Then $n^{-k/l}$ is a threshold function for the property of containing F as a subgraph.

Proof. Let $g \in \mathcal{G}_{n,p}$. For each *k*-subset $S \subseteq V$, let A_S be the event that the induced subgraph G[S] contains a copy of *F*, and let X_S be the indicator random variable of A_S . Set random variable $X = \sum_{S \subseteq V, |S|=k} X_S$,

so that X is the number of k-subsets which span copies of F. Notice that X is then no greater than the total number of copies of F in G.

Theorem 13.11

Theorem 13.11. Let F be a nonempty balanced graph with k vertices and l edges. Then $n^{-k/l}$ is a threshold function for the property of containing F as a subgraph.

Proof. Let $g \in \mathcal{G}_{n,p}$. For each *k*-subset $S \subseteq V$, let A_S be the event that the induced subgraph G[S] contains a copy of *F*, and let X_S be the indicator random variable of A_S . Set random variable $X = \sum_{S \subseteq V, |S|=k} X_S$,

so that X is the number of k-subsets which span copies of F. Notice that X is then no greater than the total number of copies of F in G.

We first bound the expectation of X. Consider a k-subset $S \subseteq V$. If G[S] contains a copy of F, there is a bijection $f : V(F) \to S$ (since |V(F)| = |S| = k) such that f(u)f(v) is an edge of G[S] whenever uv is an edge of F (but not necessarily conversely). So for a given bijection $f : V(F) \to S$, the probability that all these I edges f(u)f(v) are present in G[S] is p^{I} .

Theorem 13.11

Theorem 13.11. Let F be a nonempty balanced graph with k vertices and l edges. Then $n^{-k/l}$ is a threshold function for the property of containing F as a subgraph.

Proof. Let $g \in \mathcal{G}_{n,p}$. For each *k*-subset $S \subseteq V$, let A_S be the event that the induced subgraph G[S] contains a copy of *F*, and let X_S be the indicator random variable of A_S . Set random variable $X = \sum_{S \subseteq V, |S|=k} X_S$,

so that X is the number of k-subsets which span copies of F. Notice that X is then no greater than the total number of copies of F in G.

We first bound the expectation of X. Consider a k-subset $S \subseteq V$. If G[S] contains a copy of F, there is a bijection $f : V(F) \to S$ (since |V(F)| = |S| = k) such that f(u)f(v) is an edge of G[S] whenever uv is an edge of F (but not necessarily conversely). So for a given bijection $f : V(F) \to S$, the probability that all these I edges f(u)f(v) are present in G[S] is p^{I} .

Theorem 13.11 (continued 1)

Proof (continued). Thus $E(X_S) = p(A_S) \ge p^l$ (greater than or equal to because there is more then on bijection). Because there are k! bijections $f: V(F) \to S$, ther are k! possible copies of F in G[S]. So $E(X_S) = P(A_S) \le k!p^l$ (less than or equal to because copies of F in G[S] may have edges in common and so are not independent). We have

$$\begin{split} \frac{n^{k}p^{l}}{k^{k}} &\leq \binom{n}{k}p^{l} \text{ by Exercise 13.2.1(a)} \\ &\leq \sum_{S \subseteq V, |S|=k} E(X_{S}) \text{ since } E(X_{S}) \geq p^{l} \text{ and there} \\ &\text{ are } \binom{n}{k} \text{ } k \text{-subsets of } V \\ &= E\left(\sum_{S \subseteq V, |S|=k} X_{S}\right) \text{ by the linearity of expectation} \dots \end{split}$$

Theorem 13.11 (continued 1)

Proof (continued). Thus $E(X_S) = p(A_S) \ge p^l$ (greater than or equal to because there is more then on bijection). Because there are k! bijections $f: V(F) \to S$, ther are k! possible copies of F in G[S]. So $E(X_S) = P(A_S) \le k!p^l$ (less than or equal to because copies of F in G[S] may have edges in common and so are not independent). We have

$$\begin{array}{ll} \frac{n^{k}p^{l}}{k^{k}} &\leq {\binom{n}{k}}p^{l} \text{ by Exercise 13.2.1(a)} \\ &\leq \sum_{S \subseteq V, |S| = k} E(X_{S}) \text{ since } E(X_{S}) \geq p^{l} \text{ and there} \\ &\text{ are } {\binom{n}{k}} \text{ } k \text{-subsets of } V \\ &= E\left(\sum_{S \subseteq V, |S| = k} X_{S}\right) \text{ by the linearity of expectation} \dots \end{array}$$

Theorem 13.11 (continued 2)

Proof (continued).

$$\frac{n^{k}p^{l}}{k^{k}} \leq E(X) \leq {\binom{n}{K}}k!p^{l} \text{ since } E(X_{S}) \leq k!p^{l} \text{ and there}$$

$$\text{ are } {\binom{n}{k}} k \text{-subsets of } V$$

$$\leq n^{k}p^{l} \text{ by Exercise } 13.2.1(a).$$
(13.13)

So if $p \ll n^{-k/l}$ (that is, if $p/n^{-kl} = pn^{k/l} \to 0$ as $n \to \infty$, and hence $p^l n^k \to 0$ as $n \to \infty$) then $E(X) \leq n^k p^l \to 0$ as $n \to \infty$. By Markov's Inequality (Proposition 13.4), for any t > 0 we ave $P(X \ge t) \leq E(X)/t$ and so $P(X \ge t) \to 0$ as $n \to \infty$. Hence $P(X = 0) \to 1$ as $n \to \infty$ and G almost surely contains no copy of F.

We now bound the variance of X. By Exercise 13.3.1

$$V(X) \le E(X) + \sum_{S \ne T} C(X_S, X_T).$$
(13.8)

Theorem 13.11 (continued 2)

Proof (continued).

$$\frac{n^{k}p^{l}}{k^{k}} \leq E(X) \leq {\binom{n}{K}}k!p^{l} \text{ since } E(X_{S}) \leq k!p^{l} \text{ and there}$$

$$\text{ are } {\binom{n}{k}} k \text{-subsets of } V$$

$$\leq n^{k}p^{l} \text{ by Exercise } 13.2.1(a).$$
(13.13)

So if $p \ll n^{-k/l}$ (that is, if $p/n^{-kl} = pn^{k/l} \to 0$ as $n \to \infty$, and hence $p^l n^k \to 0$ as $n \to \infty$) then $E(X) \leq n^k p^l \to 0$ as $n \to \infty$. By Markov's Inequality (Proposition 13.4), for any t > 0 we ave $P(X \ge t) \leq E(X)/t$ and so $P(X \ge t) \to 0$ as $n \to \infty$. Hence $P(X = 0) \to 1$ as $n \to \infty$ and G almost surely contains no copy of F.

We now bound the variance of X. By Exercise 13.3.1

$$V(X) \le E(X) + \sum_{S \ne T} C(X_S, X_T).$$
 (13.8)

Theorem 13.11 (continued 3)

Proof (continued). As in the proof of Theorem 3.9, the value of the covariance $C(X_S, X_T)$ depends only on $|S \cap T|$. If $|S \cap T| \in \{0, 1\}$ then $C(X_S, X_T) = 0$ since no edge can be shared by G[S] and G[T] and the events A_S and A_T are independent. If $|S \cap T| = i$, where $2 \le i \le k - 1$, then each copy F_S of F in G[S] meets each copy F_T of F in G[T] in i vertices. Because F is balanced, the average degrees of a subgraph of Fdoes not exceed 2e(F)/v(F) = 2I/k. Now $F_S \cap F_T$ is a subgraph of F on *i* vertices, so the sum of the degrees of these vertices is at most 2il/k and hence $F_S \cap F_T$ consists of at most il/k edges. Hence the graph $F_S \cup F_T$ then has at least 2I - iI/k edges. So the probability that both F_S and F_T are present in G is $p^{2l-il/k}$.

()

Theorem 13.11 (continued 3)

Proof (continued). As in the proof of Theorem 3.9, the value of the covariance $C(X_S, X_T)$ depends only on $|S \cap T|$. If $|S \cap T| \in \{0, 1\}$ then $C(X_S, X_T) = 0$ since no edge can be shared by G[S] and G[T] and the events A_S and A_T are independent. If $|S \cap T| = i$, where $2 \le i \le k - 1$, then each copy F_S of F in G[S] meets each copy F_T of F in G[T] in i vertices. Because F is balanced, the average degrees of a subgraph of Fdoes not exceed 2e(F)/v(F) = 2l/k. Now $F_S \cap F_T$ is a subgraph of F on *i* vertices, so the sum of the degrees of these vertices is at most 2il/k and hence $F_S \cap F_T$ consists of at most il/k edges. Hence the graph $F_S \cup F_T$ then has at least 2I - iI/k edges. So the probability that both F_S and F_T are present in G is $p^{2l-il/k}$. As observed above, there are k! possible copies of F in G[S] and k! possible copies of F in G[T], so

$$C(X_S, X_T) = E(X_S X_T) - E(X_S)E(X_T) \le E(X_S X_T)$$

 $= P(A_S \cap A_T)$ since X_S and X_T are indicator random

variables; see (**) in the proof of Theorem 13.9...

Theorem 13.11 (continued 3)

Proof (continued). As in the proof of Theorem 3.9, the value of the covariance $C(X_S, X_T)$ depends only on $|S \cap T|$. If $|S \cap T| \in \{0, 1\}$ then $C(X_S, X_T) = 0$ since no edge can be shared by G[S] and G[T] and the events A_S and A_T are independent. If $|S \cap T| = i$, where $2 \le i \le k - 1$, then each copy F_S of F in G[S] meets each copy F_T of F in G[T] in i vertices. Because F is balanced, the average degrees of a subgraph of Fdoes not exceed 2e(F)/v(F) = 2l/k. Now $F_S \cap F_T$ is a subgraph of F on *i* vertices, so the sum of the degrees of these vertices is at most 2il/k and hence $F_S \cap F_T$ consists of at most il/k edges. Hence the graph $F_S \cup F_T$ then has at least 2I - iI/k edges. So the probability that both F_S and F_T are present in G is $p^{2l-il/k}$. As observed above, there are k! possible copies of F in G[S] and k! possible copies of F in G[T], so

$$C(X_S, X_T) = E(X_S X_T) - E(X_S)E(X_T) \le E(X_S X_T)$$

 $= P(A_S \cap A_T)$ since X_S and X_T are indicator random

variables; see (**) in the proof of Theorem 13.9...

Theorem 13.11 (continued 4)

Proof (continued). ...

$$\mathcal{C}(X_S,X_T)=\mathcal{P}(A_S\cap A_T)\leq (k!)^22^{2l-il/k}.$$

We now count the number of choices of *S* and *T* where $|S \cap T| = i$. First, there are $\binom{n}{k}$ choices for *S*, then $\binom{k}{i}$ choices for $S \cap T$, and finally $\binom{n-k}{k-i}$ choices for the vertices of $T \setminus S$. So there are $\binom{n}{k}\binom{k}{i}\binom{n-k}{k-i}$ choices for *S* and *T* (as in the proof of Theorem 13.9). But we are only interested in the size of $S \cap T$, not the precise elements of $S \cap T$. So there are $\binom{n}{k}\binom{n-k}{k-i}$ pairs (S, T) of *k*-subsets with $|S \cap T| = i$.

Theorem 13.11 (continued 4)

Proof (continued).

$$\mathcal{C}(X_S, X_T) = \mathcal{P}(A_S \cap A_T) \leq (k!)^2 2^{2l - il/k}.$$

We now count the number of choices of S and T where $|S \cap T| = i$. First, there are $\binom{n}{k}$ choices for S, then $\binom{k}{i}$ choices for $S \cap T$, and finally $\binom{n-k}{k-i}$ choices for the vertices of $T \setminus S$. So there are $\binom{n}{\iota}\binom{k}{\iota}\binom{n-k}{\iota}$ choices for S and T (as in the proof of Theorem 13.9). But we are only interested in the size of $S \cap T$, not the precise elements of $S \cap T$. So there are $\binom{n}{k}\binom{n-k}{k-i}$ pairs (S,T) of k-subsets with $|S \cap T| = i$. Since

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n}{k}\binom{n-1}{k-1} \cdots \frac{n-k+1}{1} \le n^k$$

and, similarly, $\binom{n-k}{k-i} = \frac{(n-k)!}{(k-i)!(n-2k-i)!} = \frac{(n-k)}{(k-i)!} \frac{(n-k-1)!}{(k-i-1)!} \cdots \frac{(n-2k-i+1)!}{1} \le n^{k-i}$ then...

Theorem 13.11 (continued 4)

Proof (continued).

$$\mathcal{C}(X_S,X_T)=\mathcal{P}(A_S\cap A_T)\leq (k!)^22^{2l-il/k}.$$

We now count the number of choices of S and T where $|S \cap T| = i$. First, there are $\binom{n}{k}$ choices for S, then $\binom{k}{i}$ choices for $S \cap T$, and finally $\binom{n-k}{k-i}$ choices for the vertices of $T \setminus S$. So there are $\binom{n}{k}\binom{k}{i}\binom{n-k}{k-i}$ choices for S and T (as in the proof of Theorem 13.9). But we are only interested in the size of $S \cap T$, not the precise elements of $S \cap T$. So there are $\binom{n}{k}\binom{n-k}{k-i}$ pairs (S, T) of k-subsets with $|S \cap T| = i$. Since

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n}{k}\binom{n-1}{k-1}\cdots\frac{n-k+1}{1} \le n^k$$

and, similarly, $\binom{n-k}{k-i} = \frac{(n-k)!}{(k-i)!(n-2k-i)!} = \frac{(n-k)}{(k-i)!} \frac{(n-k-1)}{(k-i-1)!} \cdots \frac{(n-2k-i+1)}{1} \le n^{k-i} \text{ then...}$

Theorem 13.11 (continued 5)

Proof (continued).

$$\sum_{S \neq T} C(X_S, X_T) \leq \sum_{S \neq T} E(X_S X_T) = \sum_{S \neq T} P(A_S \cap A_T)$$

$$\leq \sum_{i=2}^{k-1} \binom{n}{k} \binom{n-k}{k-i} (k!)^2 p^{2i-il/k}$$

$$\leq \sum_{i=2}^{k-1} n^k n^{k-i} (k!)^2 p^{2l-il/k} \text{ since } \binom{n}{k} \leq n^k$$
and $\binom{n-k}{k-i} \leq n^{k-i}$

$$= (k!)^2 \sum_{i=2}^{k-1} n^{2k} n^{-i} p^{2l} p^{-il/k}$$

$$= (k!)^2 \sum_{i=1}^{k-1} (n^k p^l)^2 (n p^{l/k})^{-i}.$$
(13.14)

Theorem 13.11 (continued 6)

Proof (continued). If $p \gg n^{-k/l}$ (that is, if $p/n^{-k/l} = pn^{k/l} \to \infty$ as $n \to \infty$, and hence $np^{l/k} \to \infty$ as $n \to \infty$) then $(np^{l/k})^{-1} \to 0$ for $i \ge 1$. By equation (13.13), $\frac{n^k p^l}{k^k} = \left(\frac{np^{l/k}}{k}\right)^k \le E(X)$ and since $np^{l/k} \to \infty$ as $n \to \infty$ then $\left(\frac{np^{l/k}}{k}\right)^n \to \infty$ as $n \to \infty$ so that $E(X) \to \infty$ as $n \to \infty$. Therefore $E(X) \ll E^2(X)$ since $\frac{E(X)}{E^2(X)} = \frac{1}{E(X)} \to 0$ as $n \to \infty$. We now

$$V(X) \leq E(X) + \sum_{S \neq T} C(X_S, X_T) \text{ by Exercise 13.3.1 (equation (13.8))}$$

$$\leq E(X) + (k!)^2 \sum_{i=2}^{k-1} (n^k p^i)^2 (n p^{1/k})^{-1} \text{ by equation (13.14)}$$

Theorem 13.11 (continued 6)

Proof (continued). If $p \gg n^{-k/l}$ (that is, if $p/n^{-k/l} = pn^{k/l} \to \infty$ as $n \to \infty$, and hence $np^{l/k} \to \infty$ as $n \to \infty$) then $(np^{l/k})^{-1} \to 0$ for $i \ge 1$. By equation (13.13), $\frac{n^k p^l}{k^k} = \left(\frac{np^{l/k}}{k}\right)^k \le E(X)$ and since $np^{l/k} \to \infty$ as $n \to \infty$ then $\left(\frac{np^{l/k}}{k}\right)^n \to \infty$ as $n \to \infty$ so that $E(X) \to \infty$ as $n \to \infty$. Therefore $E(X) \ll E^2(X)$ since $\frac{E(X)}{E^2(X)} = \frac{1}{E(X)} \to 0$ as $n \to \infty$. We now have

$$V(X) \leq E(X) + \sum_{S \neq T} C(X_S, X_T) \text{ by Exercise 13.3.1 (equation (13.8))}$$

$$\leq E(X) + (k!)^2 \sum_{i=2}^{k-1} (n^k p^i)^2 (n p^{1/k})^{-1} \text{ by equation (13.14)}$$

Theorem 13.11 (continued 7)

Proof (continued).

$$V(X) \leq E(X) + (k!)^{2} \sum_{i=2}^{k-1} (n^{k} p^{l})^{2} (np^{l/k})^{-1}$$

$$\leq E(X) + (k!)^{2} \sum_{i=2}^{k-1} (np^{l/k})^{-1} k^{2k} E^{2}(X) \text{ since } \frac{n^{k} p^{l}}{k^{k}} \leq E(X)$$

and hence $(nkp^{l})^{2} \leq k^{2k} E^{2}(X)$

$$= E(X) + E^{2}(X)(k!)^{2} k^{2k} \sum_{i=2}^{k-1} (np^{l/k})^{-1}.$$

Now

$$\frac{E^2(X)(k!)^2 k^{2k} \sum_{i=2}^{k-1} (np^{l/k})^{-i}}{E^2(X)} = (k!)^2 k^{2k} \sum_{i=2}^{k-1} (np^{l/k})^{-1} \to 0$$

as $n \to \infty$ so that...

Theorem 13.11 (continued 7)

Proof (continued).

$$V(X) \leq E(X) + (k!)^{2} \sum_{i=2}^{k-1} (n^{k} p^{l})^{2} (np^{l/k})^{-1}$$

$$\leq E(X) + (k!)^{2} \sum_{i=2}^{k-1} (np^{l/k})^{-1} k^{2k} E^{2}(X) \text{ since } \frac{n^{k} p^{l}}{k^{k}} \leq E(X)$$

and hence $(nkp^{l})^{2} \leq k^{2k} E^{2}(X)$

$$= E(X) + E^{2}(X)(k!)^{2} k^{2k} \sum_{i=2}^{k-1} (np^{l/k})^{-1}.$$

Now

$$\frac{E^2(X)(k!)^2 k^{2k} \sum_{i=2}^{k-1} (np^{l/k})^{-i}}{E^2(X)} = (k!)^2 k^{2k} \sum_{i=2}^{k-1} (np^{l/k})^{-1} \to 0$$

as $n \to \infty$ so that...

Theorem 13.11 (continued 8)

Theorem 13.11. Let *F* be a nonempty balanced graph with *k* vertices and *l* edges. Then $n^{-k/l}$ is a threshold function for the property of containing *F* as a subgraph.

Proof (continued). ... so that

$$V(X) \leq E(X) + \sum_{S \neq T} C(X_S, X_T) \ll E^2(X).$$

So the hypotheses of Corollary 13.8 are satisfied and hence $P(X = 0) \rightarrow 0$ as $n \rightarrow \infty$. That is, graph *G* almost surely contains a copy of *F*. Therefore $n^{-k/l}$ is a threshold function for the property of containing *F* as a subgraph, as claimed.