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Theorem 13.11

Theorem 13.11. Let F be a nonempty balanced graph with k vertices
and l edges. Then n−k/l is a threshold function for the property of
containing F as a subgraph.

Proof. Let g ∈ Gn,p. For each k-subset S ⊆ V , let AS be the event that
the induced subgraph G [S ] contains a copy of F , and let XS be the

indicator random variable of AS . Set random variable X =
∑

S⊆V ,|S |=k

XS ,

so that X is the number of k-subsets which span copies of F . Notice that
X is then no greater than the total number of copies of F in G .

We first bound the expectation of X . Consider a k-subset S ⊆ V . If G [S ]
contains a copy of F , there is a bijection f : V (F ) → S (since
|V (F )| = |S | = k) such that f (u)f (v) is an edge of G [S ] whenever uv is
an edge of F (but not necessarily conversely). So for a given bijection
f : V (F ) → S , the probability that all these l edges f (u)f (v) are present
in G [S ] is pl .
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Theorem 13.11

Theorem 13.11 (continued 1)

Proof (continued). Thus E (XS) = p(AS) ≥ pl (greater than or equal to
because there is more then on bijection). Because there are k! bijections
f : V (F ) → S , ther are k! possible copies of F in G [S ]. So
E (XS) = P(AS) ≤ k!pl (less than or equal to because copies of F in G [S ]
may have edges in common and so are not independent). We have

nkpl

kk
≤

(
n

k

)
pl by Exercise 13.2.1(a)

≤
∑

S⊆V ,|S |=k

E (XS) since E (XS) ≥ pl and there

are
(n
k

)
k-subsets of V

= E

 ∑
S⊆V ,|S |=k

XS

 by the linearity of expectation . . .
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Theorem 13.11 (continued 2)

Proof (continued).

nkpl

kk
≤ E (X ) ≤

(
n

K

)
k!pl since E (XS) ≤ k!pl and there

are
(n
k

)
k-subsets of V

≤ nkpl by Exercise 13.2.1(a). (13.13)

So if p � n−k/l (that is, if p/n−kl = pnk/l → 0 as n →∞, and hence
plnk → 0 as n →∞) then E (X ) ≤ nkpl → 0 as n →∞. By Markov’s
Inequality (Proposition 13.4), for any t > 0 we ave P(X ≥ t) ≤ E (X )/t
and so P(X ≥ t) → 0 as n →∞. Hence P(X = 0) → 1 as n →∞ and G
almost surely contains no copy of F .

We now bound the variance of X . By Exercise 13.3.1

V (X ) ≤ E (X ) +
∑
S 6=T

C (XS ,XT ). (13.8)
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Theorem 13.11 (continued 3)

Proof (continued). As in the proof of Theorem 3.9, the value of the
covariance C (XS ,XT ) depends only on |S ∩ T |. If |S ∩ T | ∈ {0, 1} then
C (XS ,XT ) = 0 since no edge can be shared by G [S ] and G [T ] and the
events AS and AT are independent. If |S ∩ T | = i , where 2 ≤ i ≤ k − 1,
then each copy FS of F in G [S ] meets each copy FT of F in G [T ] in i
vertices. Because F is balanced, the average degrees of a subgraph of F
does not exceed 2e(F )/v(F ) = 2l/k. Now FS ∩ FT is a subgraph of F on
i vertices, so the sum of the degrees of these vertices is at most 2il/k and
hence FS ∩ FT consists of at most il/k edges. Hence the graph FS ∪ FT

then has at least 2l − il/k edges. So the probability that both FS and FT

are present in G is p2l−il/k .

As observed above, there are k! possible
copies of F in G [S ] and k! possible copies of F in G [T ], so

C (XS ,XT ) = E (XSXT )− E (XS)E (XT ) ≤ E (XSXT )

= P(AS ∩ AT ) since XS and XT are indicator random

variables; see (∗∗) in the proof of Theorem 13.9 . . .
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Theorem 13.11 (continued 4)

Proof (continued). . . .

C (XS ,XT ) = P(AS ∩ AT ) ≤ (k!)222l−il/k .

We now count the number of choices of S and T where |S ∩T | = i . First,
there are

(n
k

)
choices for S , then

(k
i

)
choices for S ∩ T , and finally

(n−k
k−i

)
choices for the vertices of T \ S . So there are

(n
k

)(k
i

)(n−k
k−i

)
choices for S

and T (as in the proof of Theorem 13.9). But we are only interested in
the size of S ∩ T , not the precise elements of S ∩ T . So there are(n
k

)(n−k
k−i

)
pairs (S ,T ) of k-subsets with |S ∩ T | = i .

Since(
n

k

)
=

n!

k!(n − k)!
=

n

k

(
n − 1

k − 1

)
· · · n − k + 1

1
≤ nk

and, similarly,(n−k
k−i

)
= (n−k)!

(k−i)!(n−2k−i)! = (n−k)
(k−i)

(n−k−1)
(k−i−1) · · ·

(n−2k−i+1)
1 ≤ nk−i then. . .
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Theorem 13.11 (continued 5)

Proof (continued).∑
S 6=T

C (XS ,XT ) ≤
∑
S 6=T

E (XSXT ) =
∑
S 6=T

P(AS ∩ AT )

≤
k−1∑
i=2

(
n

k

)(
n − k

k − i

)
(k!)2p2i−il/k

≤
k−1∑
i=2

nknk−i (k!)2p2l−il/k since
(n
k

)
≤ nk

and
(n−k

k−i

)
≤ nk−i

= (k!)2
k−1∑
i=2

n2kn−ip2lp−il/k

= (k!)2
k−1∑
i=1

(nkpl)2(npl/k)−i . (13.14)
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Theorem 13.11

Theorem 13.11 (continued 6)

Proof (continued). If p � n−k/l (that is, if p/n−k/l = pnk/l →∞ as
n →∞, and hence npl/k →∞ as n →∞) then (npl/k)−1 → 0 for i ≥ 1.

By equation (13.13),
nkpl

kk
=

(
npl/k

k

)k

≤ E (X ) and since npl/k →∞ as

n →∞ then

(
npl/k

k

)k

→∞ as n →∞ so that E (X ) →∞ as n →∞.

Therefore E (X ) � E 2(X ) since
E (X )

E 2(X )
=

1

E (X )
→ 0 as n →∞. We now

have

V (X ) ≤ E (X ) +
∑
S 6=T

C (XS ,XT ) by Exercise 13.3.1 (equation (13.8))

≤ E (X ) + (k!)2
k−1∑
i=2

(nkpl)2(npl/k)−1 by equation (13.14)
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Proof (continued).

V (X ) ≤ E (X ) + (k!)2
k−1∑
i=2

(nkpl)2(npl/k)−1

≤ E (X ) + (k!)2
k−1∑
i=2

(npl/k)−1k2kE 2(X ) since
nkpl

kk
≤ E (X )

and hence (nkpl)2 ≤ k2kE 2(X )

= E (X ) + E 2(X )(k!)2k2k
k−1∑
i=2

(npl/k)−1.

Now

E 2(X )(k!)2k2k
∑k−1

i=2 (npl/k)−i

E 2(X )
= (k!)2k2k

k−1∑
i=2

(npl/k)−1 → 0

as n →∞ so that. . .
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Theorem 13.11 (continued 8)

Theorem 13.11. Let F be a nonempty balanced graph with k vertices
and l edges. Then n−k/l is a threshold function for the property of
containing F as a subgraph.

Proof (continued). . . . so that

V (X ) ≤ E (X ) +
∑
S 6=T

C (XS ,XT ) � E 2(X ).

So the hypotheses of Corollary 13.8 are satisfied and hence P(X = 0) → 0
as n →∞. That is, graph G almost surely contains a copy of F .
Therefore n−k/l is a threshold function for the property of containing F as
a subgraph, as claimed.
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