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Theorem 13.11

Theorem 13.11. Let F be a nonempty balanced graph with k vertices
and / edges. Then n=%/! is a threshold function for the property of
containing F as a subgraph.
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Theorem 13.11

Theorem 13.11. Let F be a nonempty balanced graph with k vertices
and / edges. Then n=%/! is a threshold function for the property of
containing F as a subgraph.

Proof. Let g € G, 5. For each k-subset S C V/, let As be the event that

the induced subgraph G[S] contains a copy of F, and let Xs be the

indicator random variable of As. Set random variable X = Z Xs,
SCV,|S|=k

so that X is the number of k-subsets which span copies of F. Notice that

X is then no greater than the total number of copies of F in G.
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Theorem 13.11

Theorem 13.11. Let F be a nonempty balanced graph with k vertices
and / edges. Then n=%/! is a threshold function for the property of
containing F as a subgraph.

Proof. Let g € G, 5. For each k-subset S C V/, let As be the event that

the induced subgraph G[S] contains a copy of F, and let Xs be the

indicator random variable of As. Set random variable X = Z Xs,
SCV,|S|=k

so that X is the number of k-subsets which span copies of F. Notice that

X is then no greater than the total number of copies of F in G.

We first bound the expectation of X. Consider a k-subset S C V. If G[S]
contains a copy of F, there is a bijection f : V(F) — S (since
|V(F)| = |S| = k) such that f(u)f(v) is an edge of G[S] whenever uv is
an edge of F (but not necessarily conversely). So for a given bijection
f: V(F) — S, the probability that all these / edges f(u)f(v) are present
in G[S]is p'.
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Theorem 13.11 (continued 1)

Proof (continued). Thus E(Xs) = p(As) > p' (greater than or equal to
because there is more then on bijection). Because there are k! bijections
f:V(F)— S, ther are k! possible copies of F in G[S]. So

E(Xs) = P(As) < k!p' (less than or equal to because copies of F in G[S]
may have edges in common and so are not independent).
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Theorem 13.11 (continued 1)

Proof (continued). Thus E(Xs) = p(As) > p' (greater than or equal to
because there is more then on bijection). Because there are k! bijections
f:V(F)— S, ther are k! possible copies of F in G[S]. So

E(Xs) = P(As) < k!p' (less than or equal to because copies of F in G[S]
may have edges in common and so are not independent). We have

kol
nkf < (Z)pl by Exercise 13.2.1(a)
< Z E(Xs) since E(Xs) > p' and there
SCV,|S|=k

are (}) k-subsets of V

= E Z Xs | by the linearity of expectation...
SCV,|S|=k
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Theorem 13.11 (continued 2)

Proof (continued).

n*p’ n I /
Tk < E(X) < K klp' since E(Xs) < k!p' and there
are (Z) k-subsets of V
< n*p' by Exercise 13.2.1(a). (13.13)

So if p < n=k/! (that'is, if p/n~% = pn*/! — 0 as n — oo, and hence
p'n* — 0 as n — co) then E(X) < n*p/ — 0 as n — co. By Markov's
Inequality (Proposition 13.4), for any t > 0 we ave P(X > t) < E(X)/t
and so P(X >t) —0as n— oo. Hence P(X =0) > 1asn—ooand G
almost surely contains no copy of F.
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Theorem 13.11 (continued 2)

Proof (continued).

n*p’ n I /
Tk < E(X) < K klp' since E(Xs) < k!p' and there
are (Z) k-subsets of V
< n*p' by Exercise 13.2.1(a). (13.13)

So if p < n=k/! (that'is, if p/n~% = pn*/! — 0 as n — oo, and hence
p'n* — 0 as n — co) then E(X) < n*p/ — 0 as n — co. By Markov's
Inequality (Proposition 13.4), for any t > 0 we ave P(X > t) < E(X)/t
and so P(X >t) —0as n— oo. Hence P(X =0) > 1asn—ooand G
almost surely contains no copy of F.

We now bound the variance of X. By Exercise 13.3.1

V(X) < E(X)+ > C(Xs, XT). (13.8)
ST
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Theorem 13.11 (continued 3)

Proof (continued). As in the proof of Theorem 3.9, the value of the
covariance C(Xs, X7) depends only on |[SN T|. If |SN T| € {0,1} then
C(Xs, X1) = 0 since no edge can be shared by G[S] and G[T] and the
events As and At are independent. If [SN T| =1/, where2 <i < k—1,
then each copy Fs of F in G[S] meets each copy Fr of F in G[T]in i
vertices.
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Theorem 13.11 (continued 3)

Proof (continued). As in the proof of Theorem 3.9, the value of the
covariance C(Xs, X7) depends only on |[SN T|. If |SN T| € {0,1} then
C(Xs, X1) = 0 since no edge can be shared by G[S] and G[T] and the
events As and At are independent. If [SN T| =1/, where2 <i < k—1,
then each copy Fs of F in G[S] meets each copy Fr of F in G[T]in i
vertices. Because F is balanced, the average degrees of a subgraph of F
does not exceed 2e(F)/v(F) = 2I//k. Now Fs N Ft is a subgraph of F on
i vertices, so the sum of the degrees of these vertices is at most 2il/k and
hence Fs N Ft consists of at most i//k edges. Hence the graph Fs U Fr
then has at least 2/ — il /k edges. So the probability that both Fs and Fr
are present in G is p2/—il/k,
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Theorem 13.11 (continued 3)

Proof (continued). As in the proof of Theorem 3.9, the value of the
covariance C(Xs, X7) depends only on |[SN T|. If |SN T| € {0,1} then
C(Xs, X1) = 0 since no edge can be shared by G[S] and G[T] and the
events As and At are independent. If [SN T| =1/, where2 <i < k—1,
then each copy Fs of F in G[S] meets each copy Fr of F in G[T]in i
vertices. Because F is balanced, the average degrees of a subgraph of F
does not exceed 2e(F)/v(F) = 2I//k. Now Fs N Ft is a subgraph of F on
i vertices, so the sum of the degrees of these vertices is at most 2il/k and
hence Fs N Ft consists of at most i//k edges. Hence the graph Fs U Fr
then has at least 2/ — il /k edges. So the probability that both Fs and Fr
are present in G is p2'~/k As observed above, there are k! possible
copies of F in G[S] and k! possible copies of F in G[T], so

C(Xs,X1) = E(XsX7)— E(Xs)E(XT) < E(XsXT)
= P(AsN A1) since Xs and Xt are indicator random

variables; see (k) in the proof of Theorem 13.9...
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Theorem 13.11 (continued 4)

Proof (continued). ...

C(Xs,X7) = P(As N AT) < (k!)222/=il/k,
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Theorem 13.11 (continued 4)

Proof (continued). ...
C(Xs,X7) = P(As N AT) < (k!)222/=il/k,

We now count the number of choices of S and T where |[SN T| = . First,
there are (Z) choices for S, then (ll‘) choices for SN T, and finally (';(__II‘)

choices for the vertices of T\ S. So there are (}) (%) (%) choices for S
and T (as in the proof of Theorem 13.9). But we are only interested in
the size of SN T, not the precise elements of SN T. So there are

() (5%) pairs (S, T) of k-subsets with |S N T| = i.
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Theorem 13.11 (continued 4)

Proof (continued). ...
C(Xs,X7) = P(As N Ar) < (k1)?2%/-1/%,

We now count the number of choices of S and T where |[SN T| = . First,
there are (Z) choices for S, then (ll‘) choices for SN T, and finally (';(__II‘)

choices for the vertices of T\ S. So there are (}) (%) (%) choices for S
and T (as in the proof of Theorem 13.9). But we are only interested in
the size of SN T, not the precise elements of SN T. So there are

(1) ('L__’f) pairs (S, T) of k-subsets with [SN T| = /. Since

n n! n{n-—1 n—k+1 K
— = — <n
k Ki(n— k)~ k\k—1 1 -

and, simiIarIy,( ) Ry D |
n—k n—k)! n—k—1 n—2k—i+1 —i
(k—i) = (k=)'(n—2k=0)! = (k=1) (k—=i—-1) """ 1 < nk=7 then. ..
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Theorem 13.11 (continued 5)

Proof (continued).

> C(Xs,Xr) < Y E(XsXr)=Y_ P(AsnAr)
ST SAT SAT
2\ fn—k
< - k! 2 2i—il/k
< ()G
S Z k k i kl 2 2/ il/k since (Z) S nk

”d () <
_ 2k_1 —il/k
= Zn n'p?p

k—

= (k)2 Z( kp"2(np!/k)~1 (13.14)

i=1
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Theorem 13.11 (continued 6)

Proof (continued). If p >> n=*// (that is, if p/n=*/" = pnk/! — o0 as
n — o0, and hence np'/k — o0 as n — co) then (np/%)™1 — 0 for i > 1.

K
P 1/k
By equation (13.13), nkkp = (npk > < E(X) and since np!/* — oo as

np!/k
n — oo then — 00 as n — 0o so that E(X) — oo as n — cc.
E(X 1
Therefore E(X) < E?(X) since E2((X)) = Ex) 0as n— oco.
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Theorem 13.11 (continued 6)

Proof (continued). If p >> n=*// (that is, if p/n=*/" = pnk/! — o0 as
n — o0, and hence np'/k — o0 as n — co) then (np/%)™1 — 0 for i > 1.

K
P 1/k
By equation (13.13), nkkp = (npk > < E(X) and since np!/* — oo as

np!/k

n—>oothen< ) — 00 as n — 0o so that E(X) — oo as n — cc.

E(X 1
Therefore E(X) < E?(X) since E2((X)) = Ex) 0 as n — oco. We now

have

V(X) < E(X)+ Y C(Xs,Xr) by Exercise 13.3.1 (equation (13.8))
S£T

x
[ay

< E(X)+ (k)2 (n*p")2(np'/*) 1 by equation (13.14)

i
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Theorem 13.11 (continued 7)

Proof (continued).

x
[y

V(X) < E(X)+ (k)Y _(n*p)(np) 7

x -
||
- N

B . nk i
< E(X)+ (K12 S (np/%) 1 kKE2(X) since Tf < E(X)
2
and hence (nkp')? < k?*E2(X)
k—1
= E(X)+ EX(X)(K1)*K** D (np!/*) 7.
i=2
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Theorem 13.11 (continued 7)

Proof (continued).

VOX) < EOO+ (P S (el )
i—
< E(X)+ (k!)2§(np’/k)—1k2k52(X) since ”:fl < E(X)
and hence (nkj)2 < k*E%(X)
= E(X)+ E2(X)(k!)?k2 g(np“k)_l.
Now -
S 2k,:(§§k‘21("p 7 _ (e k_z_;l(np’/k)—l ~0

as n — 0o so that. ..
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Theorem 13.11 (continued 8)

Theorem 13.11. Let F be a nonempty balanced graph with k vertices
and / edges. Then n=%/!is a threshold function for the property of
containing F as a subgraph.

Proof (continued). ...so that

V(X) < E(X)+ ) C(Xs, X7) < E*(X).
SAT

So the hypotheses of Corollary 13.8 are satisfied and hence P(X =0) — 0
as n — oo. That is, graph G almost surely contains a copy of F.

Therefore n=%/!'is a threshold function for the property of containing F as
a subgraph, as claimed. O
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