Graph Theory

Chapter 13. The Probabilistic Method

13.5. The Local Lemma—Proofs of Theorems

Table of contents

(1) Theorem 13.12. The Local Lemma
(2) Theorem 13.14. The Local Lemma—Symmetric Version
(3) Theorem 13.15
(4) Corollary 13.16
(5) Theorem 13.17
(6) Lemma 13.18
(7) Theorem 13.19

Theorem 13.12

Theorem 13.12. The Local Lemma.
Let A_{i}, where $i \in N$, be events in a finite probability space (Ω, P) and let $N_{i} \subseteq N$ where $i \in N$. Suppose that, for all $i \in N$,
(i) A_{i} is independent of the set of events $\left\{A_{j} \mid J \in N_{i}\right\}$,
(ii) for each $i \in N$, there is a constant p_{i} where $0<p_{i}<1$, and for each $i \in N$ we have $P\left(A_{i}\right)=p_{i} \prod_{j \in N_{i}}\left(1-p_{j}\right)$.
Set $B_{i}=\bar{A}_{i}$ where $i \in N$. Then, for any two disjoint subsets $R, S \subseteq N$,

$$
\begin{equation*}
P\left(B_{R} \cap B_{S}\right) \geq P\left(B_{R}\right) \prod_{i \in S}\left(1-p_{i}\right) \tag{13.15}
\end{equation*}
$$

In particular, when $R=\varnothing$ and $S=N$,

$$
\begin{equation*}
P\left(\cap_{i \in N} \bar{A}_{i}\right) \geq \prod_{i \in N}\left(1-p_{i}\right)>0 . \tag{13.16}
\end{equation*}
$$

Theorem 13.12 (continued 1)

Proof. If $S=\varnothing$ then $B_{S}=\cap_{i \in S} B_{i}=\cap_{i \in S} \bar{A}_{i}=\Omega$ (we could take this as the intersection of no sets) and $\prod_{i \in S}\left(1-p_{i}\right)=1$ (similarly, this could be taken as the definition of a product of no numbers), so

$$
P\left(B_{R} \cap B_{S}\right)=P\left(B_{R} \cap \Omega\right)=P\left(B_{R}\right)=P\left(B_{R}\right)(1) \geq P\left(B_{R}\right) \prod_{i \in S}\left(1-p_{i}\right)
$$

and equation (13.15) holds when $S=\varnothing$.

Theorem 13.12 (continued 1)

Proof. If $S=\varnothing$ then $B_{S}=\cap_{i \in S} B_{i}=\cap_{i \in S} \bar{A}_{i}=\Omega$ (we could take this as the intersection of no sets) and $\prod_{i \in S}\left(1-p_{i}\right)=1$ (similarly, this could be taken as the definition of a product of no numbers), so

$$
P\left(B_{R} \cap B_{S}\right)=P\left(B_{R} \cap \Omega\right)=P\left(B_{R}\right)=P\left(B_{R}\right)(1) \geq P\left(B_{R}\right) \prod_{i \in S}\left(1-p_{i}\right)
$$

and equation (13.15) holds when $S=\varnothing$.

$$
\begin{aligned}
& \text { If }|S|=1 \text { and } S=\{i\} \text {, then } B_{S}=B_{i} \text { and } \prod_{j \in S}\left(1-p_{j}\right)=1-p_{i} . \text { Define } \\
& \left.R_{1}=R \backslash N_{i} \text { and } S_{1}=R \cap N_{i} \text { (so that } R=R_{1} \cup S_{1}\right) . \text { Then } \\
& \begin{aligned}
P\left(A_{i} \cap B_{R}\right) \leq & P\left(A_{i} \cap B_{R_{1}}\right) \text { since } R_{1} \subseteq R \text { and so } \\
& B_{R}=\cap_{i \in R} \bar{A}_{i} \subseteq \cap_{i \in R_{1}} \bar{A}_{i}=B_{R_{1}} \text { and } A_{i} \cap B_{R} \subseteq A_{i} \cap B_{R_{1}} \\
= & P\left(A_{i}\right) P\left(B_{R_{1}}\right) \text { since } A_{i} \text { is independent of } \\
& \left\{A_{j} \mid j \notin N_{i}\right\} \supseteq R_{1} \text { by hypothesis (i). (*) }
\end{aligned}
\end{aligned}
$$

Theorem 13.12 (continued 1)

Proof. If $S=\varnothing$ then $B_{S}=\cap_{i \in S} B_{i}=\cap_{i \in S} \bar{A}_{i}=\Omega$ (we could take this as the intersection of no sets) and $\prod_{i \in S}\left(1-p_{i}\right)=1$ (similarly, this could be taken as the definition of a product of no numbers), so

$$
P\left(B_{R} \cap B_{S}\right)=P\left(B_{R} \cap \Omega\right)=P\left(B_{R}\right)=P\left(B_{R}\right)(1) \geq P\left(B_{R}\right) \prod_{i \in S}\left(1-p_{i}\right)
$$

and equation (13.15) holds when $S=\varnothing$.
If $|S|=1$ and $S=\{i\}$, then $B_{S}=B_{i}$ and $\prod_{j \in S}\left(1-p_{j}\right)=1-p_{i}$. Define $R_{1}=R \backslash N_{i}$ and $S_{1}=R \cap N_{i}$ (so that $R=R_{1} \cup S_{1}$). Then
$P\left(A_{i} \cap B_{R}\right) \leq P\left(A_{i} \cap B_{R_{1}}\right)$ since $R_{1} \subseteq R$ and so

$$
B_{R}=\cap_{i \in R} \bar{A}_{i} \subseteq \cap_{i \in R_{1}} \bar{A}_{i}=B_{R_{1}} \text { and } A_{i} \cap B_{R} \subseteq A_{i} \cap B_{R_{1}}
$$

$=P\left(A_{i}\right) P\left(B_{R_{1}}\right)$ since A_{i} is independent of $\left\{A_{j} \mid j \notin N_{i}\right\} \supseteq R_{1}$ by hypothesis (i).

Theorem 13.12 (continued 2)

Proof (continued). Since $S_{1} \subseteq N_{i} \subseteq N$, then by hypothesis (ii)

$$
P\left(A_{i}\right) \leq p_{i} \prod_{j \in N_{i}}\left(1-p_{j}\right) \leq p_{i} \prod_{j \in S_{1}}\left(1-p_{j}\right)
$$

for some p_{i} with $0<p_{i}<1$ and some p_{j} with $0<p_{j}<1$. In Exercise 13.5.A(i) it is to be shown by induction on $\left|S_{1}\right|$ that

$$
P\left(B_{R_{1}}\right) \prod_{j \in S_{1}}\left(1-p_{j}\right) \leq P\left(B_{R_{1}} \cap B_{S_{1}}\right) .
$$

Therefore

$$
\begin{aligned}
P\left(A_{i} \cap B_{R}\right) & \leq P\left(A_{i}\right) P\left(B_{R_{1}}\right) \text { by }(*) \\
& \leq P\left(B_{R_{1}}\right) p_{i} \prod_{j \in S_{1}}\left(1-p_{j}\right) \text { by }(* *) \\
& \leq p_{i} P\left(B_{R_{1}} \cap B_{S_{1}}\right) \text { by }(\dagger) \ldots
\end{aligned}
$$

Theorem 13.12 (continued 2)

Proof (continued). Since $S_{1} \subseteq N_{i} \subseteq N$, then by hypothesis (ii)

$$
P\left(A_{i}\right) \leq p_{i} \prod_{j \in N_{i}}\left(1-p_{j}\right) \leq p_{i} \prod_{j \in S_{1}}\left(1-p_{j}\right)
$$

for some p_{i} with $0<p_{i}<1$ and some p_{j} with $0<p_{j}<1$. In Exercise 13.5.A(i) it is to be shown by induction on $\left|S_{1}\right|$ that

$$
P\left(B_{R_{1}}\right) \prod_{j \in S_{1}}\left(1-p_{j}\right) \leq P\left(B_{R_{1}} \cap B_{S_{1}}\right) .
$$

Therefore

$$
\begin{aligned}
P\left(A_{i} \cap B_{R}\right) & \leq P\left(A_{i}\right) P\left(B_{R_{1}}\right) \text { by }(*) \\
& \leq P\left(B_{R_{1}}\right) p_{i} \prod_{j \in S_{1}}\left(1-p_{j}\right) \text { by }(* *) \\
& \leq p_{i} P\left(B_{R_{1}} \cap B_{S_{1}}\right) \text { by }(\dagger), \ldots
\end{aligned}
$$

Theorem 13.12 (continued 3)

Proof (continued). and so

$$
\begin{aligned}
P\left(B_{R} \cap B_{S}\right)= & P\left(B_{R} \cap B_{i}\right) \text { since } S=\{i\} \\
= & P\left(B_{R}\right)-P\left(B_{R} \cap A_{i}\right) \text { since } \\
& \left.B_{R}=\left(B_{R} \cap A_{i}\right) \cup\left(B_{R} \cap \bar{A}_{i}\right)=\left(B_{R} \cap A_{i}\right) \cup B_{R} \cap B_{i}\right) \\
\geq & P\left(B_{R}-p_{i} P\left(B_{R}\right) \text { by }(\dagger \dagger)\right. \\
= & P\left(B_{R}\right)\left(1-p_{i}\right)=P\left(B_{R}\right) \prod_{i \in S}\left(1-p_{i}\right),
\end{aligned}
$$

and equation (13.15) holds when $|S|=1$.
If $|S| \geq 2$, then let R_{1} and S_{1} be nonempty disjoint sets which partition S so that $S=R_{1} \cup S_{1}$. Then

```
\(P\left(B_{R} \cap B_{S}\right)=P\left(B_{R} \cap B_{R_{1} \cup S_{1}}\right)\)
    \(=P\left(B_{R} \cap B_{R_{1}} \cap B_{S_{1}}\right)\) by definition of \(B^{\prime} s\) as intersections
    \(=P\left(B_{R \cup R_{1}} \cap B_{S_{1}}\right)\) similarly.
```


Theorem 13.12 (continued 3)

Proof (continued). and so

$$
\begin{aligned}
P\left(B_{R} \cap B_{S}\right)= & P\left(B_{R} \cap B_{i}\right) \text { since } S=\{i\} \\
= & P\left(B_{R}\right)-P\left(B_{R} \cap A_{i}\right) \text { since } \\
& \left.B_{R}=\left(B_{R} \cap A_{i}\right) \cup\left(B_{R} \cap \bar{A}_{i}\right)=\left(B_{R} \cap A_{i}\right) \cup B_{R} \cap B_{i}\right) \\
\geq & P\left(B_{R}-p_{i} P\left(B_{R}\right) \text { by }(\dagger \dagger)\right. \\
= & P\left(B_{R}\right)\left(1-p_{i}\right)=P\left(B_{R}\right) \prod_{i \in S}\left(1-p_{i}\right),
\end{aligned}
$$

and equation (13.15) holds when $|S|=1$.
If $|S| \geq 2$, then let R_{1} and S_{1} be nonempty disjoint sets which partition S so that $S=R_{1} \cup S_{1}$. Then

$$
\begin{aligned}
P\left(B_{R} \cap B_{S}\right) & =P\left(B_{R} \cap B_{R_{1} \cup S_{1}}\right) \\
& =P\left(B_{R} \cap B_{R_{1}} \cap B_{S_{1}}\right) \text { by definition of } B^{\prime} \text { 's as intersections } \\
& =P\left(B_{R \cup R_{1}} \cap B_{S_{1}}\right) \text { similarly. }
\end{aligned}
$$

Theorem 13.12 (continued 4)

Proof (continued). In Exercise 13.5.A(ii) it is to be shown by induction on $\left|S_{1}\right|$ that

$$
\begin{align*}
P\left(B_{R \cup R_{1}} \cap B_{S_{1}}\right) & \geq P\left(B_{R \cup R_{1}}\right) \prod_{i \in S_{1}}\left(1-p_{i}\right) \\
& \left.=P\left(B_{R} \cap B_{R_{1}}\right) \prod_{i \in S_{1}}(1-p) i\right) .
\end{align*}
$$

In Exercise 13.5.A(iii) it is to be shown by induction on $\left|R \cup R_{1}\right|$ that

$$
P\left(B_{R} \cap B_{R_{1}}\right) \geq P\left(B_{R}\right) \prod_{i \in R_{1}}\left(1-p_{i}\right) .
$$

Theorem 13.12 (continued 5)

Proof (continued).

Therefore

$$
\begin{aligned}
P\left(B_{R} \cap B_{S}\right) & =P\left(B_{R \cup R_{1}} \cap B_{S_{1}}\right) \\
& \geq P\left(B_{R} \cap B_{R_{1}}\right) \prod_{i \in S_{1}}\left(1-p_{i}\right) \text { by }(\ddagger) \\
& \geq P\left(B_{R}\right) \prod_{i \in R_{1}}\left(1-p_{i}\right) \prod_{i \in S_{1}}\left(1-p_{i}\right) \text { by }(\ddagger \ddagger) \\
& =P\left(B_{R}\right) \prod_{i \in S}\left(1-p_{i}\right) \text { since } S=R_{1} \cup S_{1},
\end{aligned}
$$

so equation (13.15) holds when $|S| \geq 2$ and hence holds for all S and R subsets of N, as claimed.

Theorem 13.14

Theorem 13.14. The Local Lemma-Symmetric Version. let A_{i}, where $i \in N$, be events in a finite probability space (Ω, P) having a dependency graph with maximum degree d. Suppose $P\left(A_{i}\right)<1 /(e(d+1))$ for all $i \in N$ (where " e " here is the base of the natural \log function). Then $P\left(\cap_{i \in N} \bar{A}_{i}\right)>0$.

Proof. Set $p_{1}=1 /(d+1)=p$ for $i \in N$ (this value of p maximizes the function $f(p)=p(1-p)^{d}$ for $p \in(0,1)$ and will give us a "uniform bound" on $p\left(A_{i}\right)$ in hypothesis (ii) of The Local Lemma). Now the sets N_{i} are defined from the dependency graph (N_{i} includes all neighbors of vertex i in the dependency graph, so we have event A_{i} is independent of the events $\left\{A_{j} \mid j \notin N_{i}\right\}$, as required by hypothesis (i) of The Local Lemma).

Theorem 13.14

Theorem 13.14. The Local Lemma-Symmetric Version. let A_{i}, where $i \in N$, be events in a finite probability space (Ω, P) having a dependency graph with maximum degree d. Suppose $P\left(A_{i}\right)<1 /(e(d+1))$ for all $i \in N$ (where " e " here is the base of the natural \log function). Then $P\left(\cap_{i \in N} \bar{A}_{i}\right)>0$.

Proof. Set $p_{1}=1 /(d+1)=p$ for $i \in N$ (this value of p maximizes the function $f(p)=p(1-p)^{d}$ for $p \in(0,1)$ and will give us a "uniform bound" on $p\left(A_{i}\right)$ in hypothesis (ii) of The Local Lemma). Now the sets N_{i} are defined from the dependency graph (N_{i} includes all neighbors of vertex i in the dependency graph, so we have event A_{i} is independent of the events $\left\{A_{j} \mid j \notin N_{i}\right\}$, as required by hypothesis (i) of The Local Lemma).

Theorem 13.14 (continued)

Proof (continued). Now
$P\left(A_{i}\right) \leq \frac{1}{e(d+1)}$ by hypothesis
$\leq\left(\frac{d}{d+1}\right)^{d}\left(\frac{1}{d+1}\right)$ since $1+\frac{1}{d} \leq e^{1 / d}$ by Exercise 13.2.1(b)
with $x=1 / d$, or $(1+1 / d)^{d} \leq e$ or $\left(\frac{d+1}{d}\right)^{d} \leq e$

$$
\begin{aligned}
& \text { or }\left(\frac{d}{d+1}\right)^{d} \geq \frac{1}{e} \\
= & p \prod_{j \in N_{i}}(1-p)^{d} \text { since } p_{i}=p=\frac{1}{d+1} \text { for all } i \in N .
\end{aligned}
$$

So hypothesis (ii) of the Local Lemma holds. Hence, by the Local Lemma (Theorem 13.12, the "in particular" part), $P\left(\cap_{i \in N} \bar{A}_{i}\right)>0$, as claimed.

Theorem 13.15

Theorem 13.15. Let $H=(V, \mathcal{F})$ be a hypergraph in which each edge has at least k elements and meets at most d other edges. If $e(d+1) \leq 2^{k-1}$ (again, " e " here is the base of the natural log function), then H is 2 -colourable.

Proof. Consider a random 2-colouring of V, where each vertex receives one of two colours with probability $1 / 2$. For each edge F of H, denote by A_{F} the event that F is monochomatic. Then events A_{F} and A_{G} are independent unless edges F and G share vertices. Since an edge of H meets at most d other edges, then the dependence graph for the events $\left\{A_{F} \mid F \in \mathcal{F}\right\}$ has maximum degree d.

Theorem 13.15

Theorem 13.15. Let $H=(V, \mathcal{F})$ be a hypergraph in which each edge has at least k elements and meets at most d other edges. If $e(d+1) \leq 2^{k-1}$ (again, " e " here is the base of the natural log function), then H is 2 -colourable.

Proof. Consider a random 2-colouring of V, where each vertex receives one of two colours with probability $1 / 2$. For each edge F of H, denote by A_{F} the event that F is monochomatic. Then events A_{F} and A_{G} are independent unless edges F and G share vertices. Since an edge of H meets at most d other edges, then the dependence graph for the events $\left\{A_{F} \mid F \in \mathcal{F}\right\}$ has maximum degree d. (less than or equal since F has at leastk elements, and times 2 because there are 2 colours). So $P\left(A_{F}\right) \leq 2^{1-k} \leq 1 /(e(d+1))$ and the hypotheses of the symmetric version of The Local Lemma are satisfied. Hence, $P\left(\cap_{F \in \mathcal{F}} A_{F}\right)>0$ and, by Note 13.5.A, hence H is 2-colourable.

Theorem 13.15

Theorem 13.15. Let $H=(V, \mathcal{F})$ be a hypergraph in which each edge has at least k elements and meets at most d other edges. If $e(d+1) \leq 2^{k-1}$ (again, " e " here is the base of the natural log function), then H is 2-colourable.

Proof. Consider a random 2-colouring of V, where each vertex receives one of two colours with probability $1 / 2$. For each edge F of H, denote by A_{F} the event that F is monochomatic. Then events A_{F} and A_{G} are independent unless edges F and G share vertices. Since an edge of H meets at most d other edges, then the dependence graph for the events $\left\{A_{F} \mid F \in \mathcal{F}\right\}$ has maximum degree d. Then $P\left(A_{F}\right) \leq 2 \cdot 1 / 2^{k}=2^{1-k}$ (less than or equal since F has at least k elements, and times 2 because there are 2 colours). So $P\left(A_{F}\right) \leq 2^{1-k} \leq 1 /(e(d+1))$ and the hypotheses of the symmetric version of The Local Lemma are satisfied. Hence, $P\left(\cap_{F \in \mathcal{F}} A_{F}\right)>0$ and, by Note 13.5.A, hence H is 2-colourable.

Corollary 13.16

Corollary 13.16. Let $H=(V, \mathcal{F})$ be a k-uniform k-regular hypergraph, where $k \geq 9$. Then H is 2 -colourable.

Proof. Since H is k-uniform, then each edge contains exactly k elements (i.e., vertices), and since H is k-regular then each vertex of H lies on k edges. So for given edge F of H, F contains k vertices and each lies on $k-1$ edges (along with edge F), so that edge F meets at most $d=k(k-1)$ other edges.

Corollary 13.16

Corollary 13.16. Let $H=(V, \mathcal{F})$ be a k-uniform k-regular hypergraph, where $k \geq 9$. Then H is 2 -colourable.

Proof. Since H is k-uniform, then each edge contains exactly k elements (i.e., vertices), and since H is k-regular then each vertex of H lies on k edges. So for given edge F of H, F contains k vertices and each lies on $k-1$ edges (along with edge F), so that edge F meets at most $d=k(k-1)$ other edges. If $k \geq 9$ then
$e(d+1)=e(k(k-1)+1) \leq 2^{k-1}$ since (1) for $k=9$ we have
$e(k(k-1)+1)=73 e \approx 198.4,2^{k-1}=256$, and (2)
$f(x)=2^{x-1}-e\left(x^{2}-x+1\right)$ has derivative
$f^{\prime}(x)=(\ln 2) 2^{x-1}-e(2 x-1)>0$ for $x \geq 9$, so that f is increasing for
$x \geq 9$ and hence $f(x) \geq f(9)>0$ for all $x \geq 9$.

Corollary 13.16

Corollary 13.16. Let $H=(V, \mathcal{F})$ be a k-uniform k-regular hypergraph, where $k \geq 9$. Then H is 2 -colourable.

Proof. Since H is k-uniform, then each edge contains exactly k elements (i.e., vertices), and since H is k-regular then each vertex of H lies on k edges. So for given edge F of H, F contains k vertices and each lies on $k-1$ edges (along with edge F), so that edge F meets at most $d=k(k-1)$ other edges. If $k \geq 9$ then $e(d+1)=e(k(k-1)+1) \leq 2^{k-1}$ since (1) for $k=9$ we have $e(k(k-1)+1)=73 e \approx 198.4,2^{k-1}=256$, and (2) $f(x)=2^{x-1}-e\left(x^{2}-x+1\right)$ has derivative $f^{\prime}(x)=(\ln 2) 2^{x-1}-e(2 x-1)>0$ for $x \geq 9$, so that f is increasing for $x \geq 9$ and hence $f(x) \geq f(9)>0$ for all $x \geq 9$. So the hypotheses of

Corollary 13.16

Corollary 13.16. Let $H=(V, \mathcal{F})$ be a k-uniform k-regular hypergraph, where $k \geq 9$. Then H is 2 -colourable.

Proof. Since H is k-uniform, then each edge contains exactly k elements (i.e., vertices), and since H is k-regular then each vertex of H lies on k edges. So for given edge F of H, F contains k vertices and each lies on $k-1$ edges (along with edge F), so that edge F meets at most $d=k(k-1)$ other edges. If $k \geq 9$ then $e(d+1)=e(k(k-1)+1) \leq 2^{k-1}$ since (1) for $k=9$ we have $e(k(k-1)+1)=73 e \approx 198.4,2^{k-1}=256$, and (2) $f(x)=2^{x-1}-e\left(x^{2}-x+1\right)$ has derivative $f^{\prime}(x)=(\ln 2) 2^{x-1}-e(2 x-1)>0$ for $x \geq 9$, so that f is increasing for $x \geq 9$ and hence $f(x) \geq f(9)>0$ for all $x \geq 9$. So the hypotheses of Theorem 13.15 are satisfied and hence H is 2-colourable.

Theorem 13.17

Theorem 13.17. Let D be a strict (i.e., "simple") k-diregular digraph where $k \geq 8$. Then D contains a directed even cycle.

Proof. Consider a random 2-colouring of V, where each vertex receives one of the two colours with probability $1 / 2$. For each vertex v of D, denote by A_{v} the event that $c(u)=c(v)$ for all $u \in N^{+}(v)$ (that is, A_{v} denotes the event that all outneighbors of v are the same colour as v). So A_{v} is independent of all A_{u} such that $\left(\{u\} \cup N^{+}(u)\right) \cap N^{+}(v)=\varnothing$ (that is, the outneighbors of v do not include any outneighbors of u nor u itself). Then A_{v} is dependent on some A_{u} when onr (or more) of the k outneighbors of v is one of the k outneighbors of u or u itself.

Theorem 13.17

Theorem 13.17. Let D be a strict (i.e., "simple") k-diregular digraph where $k \geq 8$. Then D contains a directed even cycle.

Proof. Consider a random 2-colouring of V, where each vertex receives one of the two colours with probability $1 / 2$. For each vertex v of D, denote by A_{v} the event that $c(u)=c(v)$ for all $u \in N^{+}(v)$ (that is, A_{v} denotes the event that all outneighbors of v are the same colour as v). So A_{v} is independent of all A_{u} such that $\left(\{u\} \cup N^{+}(u)\right) \cap N^{+}(v)=\varnothing$ (that is, the outneighbors of v do not include any outneighbors of u nor u itself). Then A_{v} is dependent on some A_{u} when onr (or more) of the k outneighbors of v is one of the k outneighbors of u or u itself. Since D is k-diregular, then each of the k-outneighbors of v can be an outneighbor of $k-1$ other vertices (along with being an outneighbor of v itself) and is a vertex associated with some A_{u}, so that each outneighbor of v is associated with up to k other events dependent on A_{v}. So in the dependency graph of the event $\left\{A_{v} \mid v \in V\right\}$, each vertex is of degree at most $d=k^{2}$.

Theorem 13.17

Theorem 13.17. Let D be a strict (i.e., "simple") k-diregular digraph where $k \geq 8$. Then D contains a directed even cycle.

Proof. Consider a random 2-colouring of V, where each vertex receives one of the two colours with probability $1 / 2$. For each vertex v of D, denote by A_{v} the event that $c(u)=c(v)$ for all $u \in N^{+}(v)$ (that is, A_{v} denotes the event that all outneighbors of v are the same colour as v). So A_{v} is independent of all A_{u} such that $\left(\{u\} \cup N^{+}(u)\right) \cap N^{+}(v)=\varnothing$ (that is, the outneighbors of v do not include any outneighbors of u nor u itself). Then A_{v} is dependent on some A_{u} when onr (or more) of the k outneighbors of v is one of the k outneighbors of u or u itself. Since D is k-diregular, then each of the k-outneighbors of v can be an outneighbor of $k-1$ other vertices (along with being an outneighbor of v itself) and is a vertex associated with some A_{u}, so that each outneighbor of v is associated with up to k other events dependent on A_{v}. So in the dependency graph of the event $\left\{A_{v} \mid v \in V\right\}$, each vertex is of degree at most $d=k^{2}$.

Theorem 13.17 (continued 1)

Theorem 13.17. Let D be a strict (i.e., "simple") k-diregular digraph where $k \geq 8$. Then D contains a directed even cycle.

Proof (continued). Next, notice that \bar{A}_{v} is the event that v has an outneighbor of a different colour. Since v has k outneighbors then $P\left(A_{v}\right)=1 / 2^{k}$. With $d=k^{2}$ we have
$P\left(A_{i}\right)=\frac{1}{2^{k}} \leq \frac{1}{e(d+1)}=\frac{1}{e\left(k^{2}+1\right)}$ for $k \geq 8$, since (1) for $k=8$ we
have $\frac{1}{2^{k}}=\frac{1}{2^{8}}=\frac{1}{256} \approx 0.0039, \frac{1}{e\left(k^{2}+1\right)}=\frac{1}{65 e} \approx 0.0057$, and (2)
$f(x)=\frac{1}{e\left(x^{2}+1\right)}-2^{-x}$ has derivative $f^{\prime}(x)=\frac{-2 x}{e\left(x^{2}+1\right)^{2}}+(\ln 2) 2^{-x}>0$
for $k \geq 8$ so that f is increasing for $x \geq 8$ and hence $f(x) \geq f(8)>0$ for all $x \geq 8$. So the hypotheses of Theorem 3.14 are satisfied and hence $P\left(\cap_{v \in V} A_{V}\right)>0$. That is, there is a 2 -colouring of V such that every $v \in V$ has an outneighbor of the opposite colour.

Theorem 13.17 (continued 1)

Theorem 13.17. Let D be a strict (i.e., "simple") k-diregular digraph where $k \geq 8$. Then D contains a directed even cycle.

Proof (continued). Next, notice that \bar{A}_{v} is the event that v has an outneighbor of a different colour. Since v has k outneighbors then $P\left(A_{v}\right)=1 / 2^{k}$. With $d=k^{2}$ we have $P\left(A_{i}\right)=\frac{1}{2^{k}} \leq \frac{1}{e(d+1)}=\frac{1}{e\left(k^{2}+1\right)}$ for $k \geq 8$, since (1) for $k=8$ we have $\frac{1}{2^{k}}=\frac{1}{2^{8}}=\frac{1}{256} \approx 0.0039, \frac{1}{e\left(k^{2}+1\right)}=\frac{1}{65 e} \approx 0.0057$, and (2) $f(x)=\frac{1}{e\left(x^{2}+1\right)}-2^{-x}$ has derivative $f^{\prime}(x)=\frac{-2 x}{e\left(x^{2}+1\right)^{2}}+(\ln 2) 2^{-x}>0$ for $k \geq 8$ so that f is increasing for $x \geq 8$ and hence $f(x) \geq f(8)>0$ for all $x \geq 8$. So the hypotheses of Theorem 3.14 are satisfied and hence $P\left(\cap_{v \in V} \bar{A}_{v}\right)>0$. That is, there is a 2 -colouring of V such that every $v \in V$ has an outneighbor of the opposite colour.

Theorem 13.17 (continued 2)

Theorem 13.17. Let D be a strict (i.e., "simple") k-diregular digraph where $k \geq 8$. Then D contains a directed even cycle.

Proof (continued). With respect to this colouring, let $u P v$ be a maximal (length) properly 2-coloured directed path in D and let w be an outneighbor of v of the opposite colour of v. Since $u P v$ is maximal, then w must be some vertex of $u P v$ (or else $u P v w$ would be a longer properly 2 -coloured path in D). So take the segment of P from w to v (denoted $w P v$) and then add the arc from v to w to produce a cycle in D. This cycle is properly coloured and so is an even length cycle, as claimed.

Lemma 13.18

Lemma 13.18. Let $G=(V, E)$ be a simple graph and let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of V into k sets, each of cardinality at least $2 e \Delta$ (again, " e " here is the base of the natural log function). Then there is a stable set S in G such that $\left|S \cap V_{i}\right|=1$ for $1 \leq i \leq k$.

Proof. By deleting vertices from G if necessary, we may assume that $\left|V_{i}\right|=t=\lceil 2 e \Delta\rceil$ for $1 \leq i \leq k$ (we'll show the existence of a stable set S under these conditions, then the deleted vertices and relevant edges can be added back in to G and this won't have an effect on the stability of set S nor on the intersection property of set S). We select one vertex v_{i} at random from each set V_{i} for $1 \leq i \leq k$, and set $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Lemma 13.18

Lemma 13.18. Let $G=(V, E)$ be a simple graph and let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of V into k sets, each of cardinality at least $2 e \Delta$ (again, " e " here is the base of the natural log function). Then there is a stable set S in G such that $\left|S \cap V_{i}\right|=1$ for $1 \leq i \leq k$.

Proof. By deleting vertices from G if necessary, we may assume that $\left|V_{i}\right|=t=\lceil 2 e \Delta\rceil$ for $1 \leq i \leq k$ (we'll show the existence of a stable set S under these conditions, then the deleted vertices and relevant edges can be added back in to G and this won't have an effect on the stability of set S nor on the intersection property of set S). We select one vertex v_{i} at random from each set V_{i} for $1 \leq i \leq k$, and set $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

For an edge f of G, let A_{f} denote the event that both ends of f belong to S. Since $\left|V_{i}\right|=t$ for each i then $P\left(A_{f}\right)=1 / t^{2}$ for all $f \in E$. In Exercise 13.5. A is to be shown that A_{f} is dependent only on those events A_{g} such that an end of g lies in the same set V_{i} as an end of f

Lemma 13.18

Lemma 13.18. Let $G=(V, E)$ be a simple graph and let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of V into k sets, each of cardinality at least $2 e \Delta$ (again, " e " here is the base of the natural log function). Then there is a stable set S in G such that $\left|S \cap V_{i}\right|=1$ for $1 \leq i \leq k$.

Proof. By deleting vertices from G if necessary, we may assume that $\left|V_{i}\right|=t=\lceil 2 e \Delta\rceil$ for $1 \leq i \leq k$ (we'll show the existence of a stable set S under these conditions, then the deleted vertices and relevant edges can be added back in to G and this won't have an effect on the stability of set S nor on the intersection property of set S). We select one vertex v_{i} at random from each set V_{i} for $1 \leq i \leq k$, and set $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

For an edge f of G, let A_{f} denote the event that both ends of f belong to S. Since $\left|V_{i}\right|=t$ for each i then $P\left(A_{f}\right)=1 / t^{2}$ for all $f \in E$. In Exercise 13.5. A is to be shown that A_{f} is dependent only on those events A_{g} such that an end of g lies in the same set V_{i} as an end of f.

Lemma 13.18 (continued 1)

Lemma 13.18. Let $G=(V, E)$ be a simple graph and let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of V into k sets, each of cardinality at least $2 e \Delta$ (again, " e " here is the base of the natural log function). Then there is a stable set S in G such that $\left|S \cap V_{i}\right|=1$ for $1 \leq i \leq k$.

Proof (continued). For a given A_{f} where f has its ends in V_{i} and V_{j} (where possibly $i=j$), there are at most $t \Delta$ edges with an end in V_{i} and at most $t \Delta$ edges with an end in V_{j}, so that there are at most $2 t \Delta-1$ other events A_{g} which are dependent on A_{f}. We set $d=2 t \Delta-1$ so that in the dependency graph for events $\left\{A_{f} \mid f \in E\right\}$ has maximum degree at most $d=2 t \Delta-1$. Also,

Lemma 13.18 (continued 1)

Lemma 13.18. Let $G=(V, E)$ be a simple graph and let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of V into k sets, each of cardinality at least $2 e \Delta$ (again, " e " here is the base of the natural log function). Then there is a stable set S in G such that $\left|S \cap V_{i}\right|=1$ for $1 \leq i \leq k$.

Proof (continued). For a given A_{f} where f has its ends in V_{i} and V_{j} (where possibly $i=j$), there are at most $t \Delta$ edges with an end in V_{i} and at most $t \Delta$ edges with an end in V_{j}, so that there are at most $2 t \Delta-1$ other events A_{g} which are dependent on A_{f}. We set $d=2 t \Delta-1$ so that in the dependency graph for events $\left\{A_{f} \mid f \in E\right\}$ has maximum degree at most $d=2 t \Delta-1$. Also,

$$
\begin{gathered}
P\left(A_{f}\right)=\frac{1}{t^{2}}=\frac{1}{t\lceil 2 e \Delta\rceil} \leq \frac{1}{t(2 e \Delta)} \\
=\frac{1}{e(2 t \Delta)}=\frac{1}{e((2 t \Delta-1)+1)}=\frac{1}{e(d+1)} .
\end{gathered}
$$

Lemma 13.18 (continued 2)

Lemma 13.18. Let $G=(V, E)$ be a simple graph and let $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of V into k sets, each of cardinality at least $2 e \Delta$ (again, " e " here is the base of the natural \log function). Then there is a stable set S in G such that $\left|S \cap V_{i}\right|=1$ for $1 \leq i \leq k$.

Proof (continued). So the hypotheses of Theorem 13.14 hold and hence $P\left(\cap_{f \in E} \bar{A}_{f}\right)>0$. So by Note 13.5.A, there exists a set S which (by construction) intersects each V_{i} in one point and each edge f of G has its ends in different sets V_{i} and V_{j} (since \bar{A}_{f} holds; i.e., f does not have both ends in the same V_{i}). Since S contains exactly one point from each V_{i}, then every edge incident to a vertex in S has its other end outside of S. That is, S is a stable set, as claimed.

Theorem 13.19

Theorem 13.19. Let $G=(V, E)$ be a simple $2 r$-regular graph with girth at least $2 e(4 r-2)$ (again, " e " here is the base of the natural log function). Then $\operatorname{la}(G)=r+1$.

Proof. We saw in Note 13.5.B that $\operatorname{la}(G) \leq r+1$. We now borrow a result from Section 16.4 ("Perfect Matchings and Factors"): "Every $2 r$-regular graph admits a decomposition into 2-factors" (this is Exercise 16.4.16).

Theorem 13.19

Theorem 13.19. Let $G=(V, E)$ be a simple $2 r$-regular graph with girth at least $2 e(4 r-2)$ (again, " e " here is the base of the natural log function). Then $\operatorname{la}(G)=r+1$.

Proof. We saw in Note 13.5.B that $\operatorname{la}(G) \leq r+1$. We now borrow a result from Section 16.4 ("Perfect Matchings and Factors"): "Every $2 r$-regular graph admits a decomposition into 2-factors" (this is Exercise 16.4.16).

Consider such a decomposition $\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ of G and let C_{i}, for $1 \leq i \leq k$, be the constituent cycles of these 2 -factors (since a 2 -factor is a 2-regular graph, then it is a vertex disjoint union of cycles). Define the edge sets $V_{i}=E\left(C_{i}\right)$ for $1 \leq i \leq k$. The line graph H of G is $(4 r-2)$-regular (since each edge of G is adjacent to $2 r-1$ other edges at each of its ends).

Theorem 13.19

Theorem 13.19. Let $G=(V, E)$ be a simple $2 r$-regular graph with girth at least $2 e(4 r-2)$ (again, " e " here is the base of the natural log function). Then $\operatorname{la}(G)=r+1$.

Proof. We saw in Note 13.5.B that $\operatorname{la}(G) \leq r+1$. We now borrow a result from Section 16.4 ("Perfect Matchings and Factors"): "Every $2 r$-regular graph admits a decomposition into 2-factors" (this is Exercise 16.4.16).

Consider such a decomposition $\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ of G and let C_{i}, for $1 \leq i \leq k$, be the constituent cycles of these 2-factors (since a 2 -factor is a 2-regular graph, then it is a vertex disjoint union of cycles). Define the edge sets $V_{i}=E\left(C_{i}\right)$ for $1 \leq i \leq k$. The line graph H of G is $(4 r-2)$-regular (since each edge of G is adjacent to $2 r-1$ other edges at each of its ends).

Theorem 13.19 (continued)

Theorem 13.19. Let $G=(V, E)$ be a simple $2 r$-regular graph with girth at least $2 e(4 r-2)$ (again, " e " here is the base of the natural log function). Then $\operatorname{la}(G)=r+1$.

Proof (continued). Because G has girth at least $2 e(4 r-2)$ by hypothesis, then the edge sets $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ partition the vertex set $V(H)$ into k sets, each of cardinality at least $2 e(4 r-2)$ (since each is the set of edges of a cycle in G). So the hypotheses of Lemma 13.18 are satisfied by the line graph H, so H has a stable set S meeting each set V_{i} in one vertex. Define the subgraphs $L_{i}=F_{i} \backslash S$ for $1 \leq i \leq r$. Since F_{i} is a collection of vertex disjoint cycles in G and S includes an edge of each of these cycles, then each L_{i} is a linear forest on G. Also, if we set L_{0} equal to the subgraph of G which has edge set S and vertex set of all ends of edges in S (so that L_{0} is a linear forest where each tree has one edge because S is a stable set). Then $\left\{L_{0}, L_{1}, \ldots, L_{r}\right\}$ is a decomposition of G into $r+1$ linear forests. So $\operatorname{la}(G)=r+1$.

Theorem 13.19 (continued)

Theorem 13.19. Let $G=(V, E)$ be a simple $2 r$-regular graph with girth at least $2 e(4 r-2)$ (again, " e " here is the base of the natural log function). Then $\operatorname{la}(G)=r+1$.

Proof (continued). Because G has girth at least $2 e(4 r-2)$ by hypothesis, then the edge sets $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ partition the vertex set $V(H)$ into k sets, each of cardinality at least $2 e(4 r-2)$ (since each is the set of edges of a cycle in G). So the hypotheses of Lemma 13.18 are satisfied by the line graph H, so H has a stable set S meeting each set V_{i} in one vertex. Define the subgraphs $L_{i}=F_{i} \backslash S$ for $1 \leq i \leq r$. Since F_{i} is a collection of vertex disjoint cycles in G and S includes an edge of each of these cycles, then each L_{i} is a linear forest on G. Also, if we set L_{0} equal to the subgraph of G which has edge set S and vertex set of all ends of edges in S (so that L_{0} is a linear forest where each tree has one edge because S is a stable set). Then $\left\{L_{0}, L_{1}, \ldots, L_{r}\right\}$ is a decomposition of G into $r+1$ linear forests. So $\operatorname{la}(G)=r+1$.

