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Theorem 13.12

Theorem 13.12. THE LoCAL LEMMA.
Let A;, where i € N, be events in a finite probability space (€2, P) and let
N; C N where i € N. Suppose that, for all i € N,

(i) Aj is independent of the set of events {A; | J € N;},
(ii) for each i € N, there is a constant p; where 0 < p; < 1, and

for each i € N we have P(A;) = p;i [[;cp, (1 — pj)-

Set B; = A; where i € N. Then, for any two disjoint subsets R, S C N,

P(Br N Bs) > P(Br) [ (1 — pi). (13.15)
ies

In particular, when R = @ and S = N,

P (NienA) > [J(1 = pi) > 0. (13.16)
ieN

Graph Theory December 29, 2020 3 / 20



Theorem 13.12 (continued 1)
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Theorem 13.12 (continued 1)

Proof. If S = @ then Bs = NjcsB; = NicsA; = Q (we could take this as
the intersection of no sets) and [];.s(1 — p;) = 1 (similarly, this could be
taken as the definition of a product of no numbers), so

P(Br N Bs) = P(BrN Q) = P(Bg) = P(Br)(1) > P(Br) [ [(1 - pi).
s

and equation (13.15) holds when S = @.
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Theorem 13.12 (continued 1)

Proof. If S = @ then Bs = NjcsB; = NicsA; = Q (we could take this as
the intersection of no sets) and [];.s(1 — p;) = 1 (similarly, this could be
taken as the definition of a product of no numbers), so

P(BR N Bs) = P(BR N Q) = P(BR) = P(BR)(].) > P(BR)H(]- — p,'),
i€eS
and equation (13.15) holds when S = @.

If |S|=1and S = {i}, then Bs = B; and [[;c5(1 — p;) =1 — p;. Define
Ri =R\ N; and S = RN N; (so that R = Ry U S1). Then
P(AinBgr) < P(AiNBg,) since Ri C R and so
Br = NicrAi C Nicr,Ai = Br, and A;N Br C A; N Bg,
= P(A;i)P(Bg,) since A; is independent of
{A;j | j & N;i} 2 Ry by hypothesis (i). (%)
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Theorem 13.12 (continued 2)

Proof (continued). Since S; C N; C N, then by hypothesis (ii)

PA)<p [T—p) < [T(1—p) ()

JEN; JE€SL

for some p; with 0 < p; < 1 and some p; with 0 < p; < 1. In Exercise
13.5.A(i) it is to be shown by induction on |S;| that

P(BRI) H(l - pj) < P(BR1 N 851)' (T)
Jj€S:
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Theorem 13.12 (continued 2)
Proof (continued). Since S; C N; C N, then by hypothesis (ii)
PA)<p [T—p) < [T(1—p) ()
JEN; j€s

for some p; with 0 < p; < 1 and some p; with 0 < p; < 1. In Exercise
13.5.A(i) it is to be shown by induction on |S;| that

P(BRI) H(l - pj) < P(BR1 N 851)' (T)
Jj€S:

Therefore

P(A,‘ N BR)

IN

P(Ai)P(Bg,) by (¥)

< P(Br,)pi [ (1= p)) by (+%)
Jj€S

piP(BRl N BSI) by (T)v cee (TT)
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Theorem 13.12 (continued 3)

Proof (continued). and so
P(BrRNBs) = P(BrNB;j)since S = {i}
= P(Br) — P(Br N A;j) since
Br = (BRﬂA) J(BRNAj))=(BrRNA;)YUBrNB;)
> P(Br — piP(Br) by (i1)
- P8 )(1 — ) = P(BR) [ (1 - p)

ieS
and equation (13.15) holds when |S| = 1.
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Theorem 13.12 (continued 3)

Proof (continued). and so
P(BrRNBs) = P(BrNB;j)since S = {i}
= P(Br) — P(Br N A;j) since
Bgr = (BRmA YU (BrRNA;) = (BrRNA)UBRNB;)
> P(Br — piP(Br) by (i1)
-~ P8 )(1 — ) = P(BR) [ (1 - p)
ieS
and equation (13.15) holds when |S| = 1.
If |S| > 2, then let Ry and S; be nonempty disjoint sets which partition S
sothat S = Ry U S;. Then
P(BrN Bs) = P(BrN Brus,)
= P(Br N Bg, N Bs,) by definition of B's as intersections
= P(Bgrur, N Bs,) similarly.
Graph Theory December 29, 2020 6 / 20



Theorem 13.12 (continued 4)

Proof (continued). In Exercise 13.5.A(ii) it is to be shown by induction

on |5;| that

P(Brur, N Bs,) > P(Brur,) [[(1 - pi)

In Exercise 13.5.A(iii) it is to be shown by induction on |[R U R;| that

P(Br N Br,) > P(Bgr) [ (1 pi). (11)
ieRy
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Theorem 13.12 (continued 5)

Proof (continued).

Therefore
P(BR N Bs) = P(BRUR1 N 851)
> P(BrNBg,) [J(1—pi) by (%)
€Sy

> P(Br) [J(1—p) [J(1—pi) by (i1)
iRy i€S;

= P(BRr) H(l — pj) since S = Ry U Sy,
ieS

so equation (13.15) holds when |S| > 2 and hence holds for all S and R
subsets of NV, as claimed. O]
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Theorem 13.14. The Local Lemma—Symmetric Version

Theorem 13.14

Theorem 13.14. THE LoCAL LEMMA—SYMMETRIC VERSION.

let A;, where i € N, be events in a finite probability space (€2, P) having a
dependency graph with maximum degree d. Suppose

P(A;) < 1/(e(d 4+ 1)) for all i € N (where “€" here is the base of the
natural log function). Then P(N;enA;) > 0.
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Theorem 13.14

Theorem 13.14. THE LoCAL LEMMA—SYMMETRIC VERSION.

let A;, where i € N, be events in a finite probability space (€2, P) having a
dependency graph with maximum degree d. Suppose

P(A;) < 1/(e(d 4+ 1)) for all i € N (where “€" here is the base of the
natural log function). Then P(N;enA;) > 0.

Proof. Set p; =1/(d + 1) = p for i € N (this value of p maximizes the
function f(p) = p(1 — p)9 for p € (0,1) and will give us a “uniform
bound” on p(A;) in hypothesis (ii) of The Local Lemma). Now the sets N;
are defined from the dependency graph (/V; includes all neighbors of vertex
i in the dependency graph, so we have event A; is independent of the
events {A; | j & N;}, as required by hypothesis (i) of The Local Lemma).
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Theorem 13.14 (continued)

Proof (continued). Now

1
P(A;) < ———— by hypothesi
(Ai)) < o(d 1) Y Nypothesis
d \¢ 1 1
< <d—|— 1) <d+ 1) since 1 + e e'/? by Exercise 13.2.1(b)

1 d
with x =1/d, or (1+1/d)? < e or <djj—> <e

d d>1
or —_— —
d+1 T e
= p[J-p)?since pi=p=
JEN;

1 for all i € N.

So hypotbhesis (ii) of the Local Lemma holds. Hence, by the Local Lemma
(Theorem 13.12, the “in particular” part), P(NjenA;) > 0, as claimed. [
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Theorem 13.15

Theorem 13.15. Let H = (V, F) be a hypergraph in which each edge
has at least k elements and meets at most d other edges. If

e(d 4 1) < 2k~ (again, “e" here is the base of the natural log function),
then H is 2-colourable.
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Theorem 13.15

Theorem 13.15. Let H = (V, F) be a hypergraph in which each edge
has at least k elements and meets at most d other edges. If

e(d 4 1) < 2k~ (again, “e" here is the base of the natural log function),
then H is 2-colourable.

Proof. Consider a random 2-colouring of V/, where each vertex receives
one of two colours with probability 1/2. For each edge F of H, denote by
AF the event that F is monochomatic. Then events Ar and Ag are
independent unless edges F and G share vertices. Since an edge of H
meets at most d other edges, then the dependence graph for the events
{Af | F € F} has maximum degree d.
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Theorem 13.15

Theorem 13.15. Let H = (V, F) be a hypergraph in which each edge
has at least k elements and meets at most d other edges. If

e(d 4 1) < 2k~ (again, “e" here is the base of the natural log function),
then H is 2-colourable.

Proof. Consider a random 2-colouring of V/, where each vertex receives
one of two colours with probability 1/2. For each edge F of H, denote by
AF the event that F is monochomatic. Then events Ar and Ag are
independent unless edges F and G share vertices. Since an edge of H
meets at most d other edges, then the dependence graph for the events
{AF | F € F} has maximum degree d. Then P(Af) <2-1/2k =21k
(less than or equal since F has at leastk elements, and times 2 because
there are 2 colours). So P(Ar) < 2!~k < 1/(e(d +1)) and the hypotheses
of the symmetric version of The Local Lemma are satisfied. Hence,
P(NgerAf) > 0 and , by Note 13.5.A, hence H is 2-colourable. ]

Graph Theory December 29, 2020 11 / 20



Corollary 13.16

Corollary 13.16. Let H = (V,F) be a k-uniform k-regular hypergraph,
where k > 9. Then H is 2-colourable.
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Corollary 13.16

Corollary 13.16

Corollary 13.16. Let H = (V,F) be a k-uniform k-regular hypergraph,
where k > 9. Then H is 2-colourable.

Proof. Since H is k-uniform, then each edge contains exactly k elements
(i.e., vertices), and since H is k-regular then each vertex of H lies on k
edges. So for given edge F of H, F contains k vertices and each lies on

k — 1 edges (along with edge F), so that edge F meets at most
d = k(k — 1) other edges.

Graph Theory
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Corollary 13.16

Corollary 13.16. Let H = (V,F) be a k-uniform k-regular hypergraph,
where k > 9. Then H is 2-colourable.

Proof. Since H is k-uniform, then each edge contains exactly k elements
(i.e., vertices), and since H is k-regular then each vertex of H lies on k
edges. So for given edge F of H, F contains k vertices and each lies on
k — 1 edges (along with edge F), so that edge F meets at most

= k(k — 1) other edges. If k > 9 then

e(d +1) = e(k(k — 1) + 1) < 2k since (1) for k = 9 we have

(k(k —1) +1) = 73e ~ 198.4, 2k-1 = 256, and (2)

(x) = 2571 — e(x? — x + 1) has derivative

f'(x) = (In2)2X71 — ¢(2x — 1) > 0 for x > 9, so that f is increasing for
x > 9 and hence f(x) > f(9) > 0 for all x > 9.

‘H(‘D
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Corollary 13.16

Corollary 13.16. Let H = (V,F) be a k-uniform k-regular hypergraph,
where k > 9. Then H is 2-colourable.

Proof. Since H is k-uniform, then each edge contains exactly k elements
(i.e., vertices), and since H is k-regular then each vertex of H lies on k
edges. So for given edge F of H, F contains k vertices and each lies on
k — 1 edges (along with edge F), so that edge F meets at most

= k(k — 1) other edges. If k > 9 then
e(d +1) = e(k(k — 1) + 1) < 2k since (1) for k = 9 we have
e(k(k —1) 4 1) = 73e ~ 198.4, 2k=1 = 256, and (2)
f(x) = 271 — ¢(x? — x + 1) has derivative
f'(x) = (In2)2X71 — ¢(2x — 1) > 0 for x > 9, so that f is increasing for
x > 9 and hence f(x) > f(9) > 0 for all x > 9. So the hypotheses of
Theorem 13.15 are satisfied and hence H is 2-colourable. O
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Theorem 13.17

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k > 8. Then D contains a directed even cycle.
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Theorem 13.17

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k > 8. Then D contains a directed even cycle.

Proof. Consider a random 2-colouring of V/, where each vertex receives
one of the two colours with probability 1/2. For each vertex v of D, denote
by A, the event that c(u) = c(v) for all u € N*(v) (that is, A, denotes
the event that all outneighbors of v are the same colour as v). So A, is
independent of all A, such that ({u} UNT(u)) N NT(v) = & (that is, the
outneighbors of v do not include any outneighbors of u nor u itself). Then
A, is dependent on some A, when onr (or more) of the k outneighbors of
v is one of the k outneighbors of u or u itself.
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Theorem 13.17

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k > 8. Then D contains a directed even cycle.

Proof. Consider a random 2-colouring of V/, where each vertex receives
one of the two colours with probability 1/2. For each vertex v of D, denote
by A, the event that c(u) = c(v) for all u € N*(v) (that is, A, denotes
the event that all outneighbors of v are the same colour as v). So A, is
independent of all A, such that ({u} UNT(u)) N NT(v) = & (that is, the
outneighbors of v do not include any outneighbors of u nor u itself). Then
A, is dependent on some A, when onr (or more) of the k outneighbors of
v is one of the k outneighbors of u or u itself. Since D is k-diregular, then
each of the k-outneighbors of v can be an outneighbor of kK — 1 other
vertices (along with being an outneighbor of v itself) and is a vertex
associated with some A, so that each outneighbor of v is associated with
up to k other events dependent on A,. So in the dependency graph of the
event {A, | v € V}, each vertex is of degree at most d = k°.
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Theorem 13.17 (continued 1)

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k > 8. Then D contains a directed even cycle.

Proof (continued). Next, notice that A, is the event that v has an
outneighbor of a different colour. Since v has k outneighbors then
P(A,) = 1/2kK. With d = k? we have
1 1

P(A)) == < =

(A7) 2k = (d+1) e(k?+1)
1 1 ~ 1
have 2k = 28 — ﬁ 0. 0039 e(k2+1) = BBe ~ 00057, and (2)

1 —2x
0= e

— 27 has derivative f'(x) = 211 +(In2)27* >0
for k > 8 so that f is increasing for x > 8 and hence f(x) > f(8) > 0 for
all x > 8.

for k > 8, since (1) for k = 8 we
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Theorem 13.17 (continued 1)

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k > 8. Then D contains a directed even cycle.

Proof (continued). Next, notice that A, is the event that v has an

outneighbor of a different colour. Since v has k outneighbors then
P(A,) = 1/2kK. With d = k? we have
1
P(A)) == < =
(A7) 2k = (d+1) e(k?+1)
1 1 ~ 1
have 2k = 28 — ﬁ 0. 0039 e(k2+1) = BBe ~ 00057, and (2)
1 i —2x x
f(X) = m -2 haS de”Vathe f,(X) = m + (ln 2)2 > 0
for k > 8 so that f is increasing for x > 8 and hence f(x) > f(8) > 0 for
all x > 8. So the hypotheses of Theorem 3.14 are satisfied and hence
P(NyevA,) > 0. That is, there is a 2-colouring of V such that every
v € V has an outneighbor of the opposite colour.

for k > 8, since (1) for k = 8 we
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Theorem 13.17 (continued 2)

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k > 8. Then D contains a directed even cycle.

Proof (continued). With respect to this colouring, let uPv be a maximal
(length) properly 2-coloured directed path in D and let w be an
outneighbor of v of the opposite colour of v. Since uPv is maximal, then
w must be some vertex of uPv (or else uPvw would be a longer properly
2-coloured path in D). So take the segment of P from w to v (denoted
wPv) and then add the arc from v to w to produce a cycle in D. This
cycle is properly coloured and so is an even length cycle, as claimed. O
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Lemma 13.18

Lemma 13.18

Lemma 13.18. Let G = (V, E) be a simple graph and let
{V4, Va,..., Vi} be a partition of V into k sets, each of cardinality at

least 2eA (again, “€" here is the base of the natural log function). Then
there is a stable set S in G such that [SNV;| =1for 1 <i<k.
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Lemma 13.18

Lemma 13.18. Let G = (V, E) be a simple graph and let
{V4, Va,..., Vi} be a partition of V into k sets, each of cardinality at

least 2eA (again, “€" here is the base of the natural log function). Then
there is a stable set S in G such that [SNV;| =1for 1 <i<k.

Proof. By deleting vertices from G if necessary, we may assume that
|Vi| =t = [2eA] for 1 < i < k (we'll show the existence of a stable set S
under these conditions, then the deleted vertices and relevant edges can be
added back in to G and this won't have an effect on the stability of set S
nor on the intersection property of set S). We select one vertex v; at
random from each set V; for 1 < i <k, andset S = {vi,vo,...,Vv,}.
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Lemma 13.18

Lemma 13.18. Let G = (V, E) be a simple graph and let

{V4, Va,..., Vi} be a partition of V into k sets, each of cardinality at
least 2eA (again, “€" here is the base of the natural log function). Then
there is a stable set S in G such that [SNV;| =1for 1 <i<k.

Proof. By deleting vertices from G if necessary, we may assume that
|Vi| =t = [2eA] for 1 < i < k (we'll show the existence of a stable set S
under these conditions, then the deleted vertices and relevant edges can be
added back in to G and this won't have an effect on the stability of set S
nor on the intersection property of set S). We select one vertex v; at
random from each set V; for 1 < i <k, andset S = {vi,vo,...,Vv,}.

For an edge f of G, let Ar denote the event that both ends of f belong to
S. Since |V;| = t for each i then P(As) = 1/t2 for all f € E. In Exercise
13.5.A is to be shown that A¢ is dependent only on those events A, such
that an end of g lies in the same set V; as an end of f.
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Lemma 13.18 (continued 1)

Lemma 13.18. Let G = (V, E) be a simple graph and let
{V1, Vo, ..., Vi} be a partition of V into k sets, each of cardinality at
least 2eA (again, “€" here is the base of the natural log function). Then

there is a stable set S in G such that [SNV;| =1for1 </ <k.

Proof (continued). For a given Af where f has its ends in V; and V;
(where possibly i = j), there are at most tA edges with an end in V; and
at most tA edges with an end in V;, so that there are at most 2tA — 1
other events Ag which are dependent on Ar. We set d = 2tA — 1 so that
in the dependency graph for events {A¢ | f € E} has maximum degree at
most d = 2tA — 1.
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Lemma 13.18 (continued 1)

Lemma 13.18. Let G = (V, E) be a simple graph and let
{V1, Vo, ..., Vi} be a partition of V into k sets, each of cardinality at
least 2eA (again, “€" here is the base of the natural log function). Then

there is a stable set S in G such that [SNV;| =1for1 </ <k.

Proof (continued). For a given Af where f has its ends in V; and V;
(where possibly i = j), there are at most tA edges with an end in V; and
at most tA edges with an end in V;, so that there are at most 2tA — 1
other events Ag which are dependent on Ar. We set d = 2tA — 1 so that
in the dependency graph for events {A¢ | f € E} has maximum degree at
most d = 2tA — 1. Also,

1 1 1
PiAr) =2 = t[2eA] = H(2eh)

1 1 1

T e(2th)  e((2tA—1)+1) e(d+1)
Graph Theory December 29, 2020 17 / 20




Lemma 13.18 (continued 2)

Lemma 13.18. Let G = (V, E) be a simple graph and let

{V4, Va,..., Vi} be a partition of V into k sets, each of cardinality at
least 2eA (again, “€" here is the base of the natural log function). Then
there is a stable set S in G such that [SNV;|=1for 1 < i< k.

Proof (continued). So the hypotheses of Theorem 13.14 hold and hence
P(NfeeAr) > 0. So by Note 13.5.A, there exists a set S which (by
construction) intersects each V; in one point and each edge f of G has its
ends in different sets V; and V; (since Ar holds: i.e., f does not have both
ends in the same V;). Since S contains exactly one point from each V;,
then every edge incident to a vertex in S has its other end outside of S.
That is, S is a stable set, as claimed. O
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Theorem 13.19

Theorem 13.19. Let G = (V/, E) be a simple 2r-regular graph with girth
at least 2e(4r — 2) (again, “e” here is the base of the natural log
function). Then la(G) =r + 1.
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Theorem 13.19

Theorem 13.19. Let G = (V/, E) be a simple 2r-regular graph with girth
at least 2e(4r — 2) (again, “e” here is the base of the natural log
function). Then la(G) =r + 1.

Proof. We saw in Note 13.5.B that la(G) < r + 1. We now borrow a
result from Section 16.4 (“Perfect Matchings and Factors”): “Every

2r-regular graph admits a decomposition into 2-factors” (this is Exercise
16.4.16).
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Theorem 13.19

Theorem 13.19. Let G = (V/, E) be a simple 2r-regular graph with girth
at least 2e(4r — 2) (again, “e” here is the base of the natural log
function). Then la(G) =r + 1.

Proof. We saw in Note 13.5.B that la(G) < r + 1. We now borrow a
result from Section 16.4 (“Perfect Matchings and Factors”): “Every

2r-regular graph admits a decomposition into 2-factors” (this is Exercise
16.4.16).

Consider such a decomposition {F1, F2,...,F,} of G and let C;, for

1 < i < k, be the constituent cycles of these 2-factors (since a 2-factor is
a 2-regular graph, then it is a vertex disjoint union of cycles). Define the
edge sets V; = E(C;) for 1 < i < k. The line graph H of G is

(4r — 2)-regular (since each edge of G is adjacent to 2r — 1 other edges at
each of its ends).

Graph Theory December 29, 2020 19 / 20



Theorem 13.19 (continued)

Theorem 13.19. Let G = (V, E) be a simple 2r-regular graph with girth
at least 2e(4r — 2) (again, “€” here is the base of the natural log
function). Then la(G) = r + 1.

Proof (continued). Because G has girth at least 2e(4r — 2) by
hypothesis, then the edge sets { V1, V>, ..., Vi } partition the vertex set
V(H) into k sets, each of cardinality at least 2e(4r — 2) (since each is the
set of edges of a cycle in G). So the hypotheses of Lemma 13.18 are
satisfied by the line graph H, so H has a stable set S meeting each set V;
in one vertex.
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Theorem 13.19 (continued)

Theorem 13.19. Let G = (V, E) be a simple 2r-regular graph with girth
at least 2e(4r — 2) (again, “€” here is the base of the natural log
function). Then la(G) = r + 1.

Proof (continued). Because G has girth at least 2e(4r — 2) by
hypothesis, then the edge sets { V1, V>, ..., Vi } partition the vertex set
V(H) into k sets, each of cardinality at least 2e(4r — 2) (since each is the
set of edges of a cycle in G). So the hypotheses of Lemma 13.18 are
satisfied by the line graph H, so H has a stable set S meeting each set V;
in one vertex. Define the subgraphs L; = F; \ S for 1 < < r. Since F; is
a collection of vertex disjoint cycles in G and S includes an edge of each
of these cycles, then each L; is a linear forest on G. Also, if we set Ly
equal to the subgraph of G which has edge set S and vertex set of all ends
of edges in S (so that Lo is a linear forest where each tree has one edge
because S is a stable set). Then {Lo, L1,...,L,} is a decomposition of G
into r + 1 linear forests. So la(G) = r + 1. O
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