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Theorem 13.12. The Local Lemma

Theorem 13.12

Theorem 13.12. The Local Lemma.
Let Ai , where i ∈ N, be events in a finite probability space (Ω,P) and let
Ni ⊆ N where i ∈ N. Suppose that, for all i ∈ N,

(i) Ai is independent of the set of events {Aj | J ∈ Ni},
(ii) for each i ∈ N, there is a constant pi where 0 < pi < 1, and

for each i ∈ N we have P(Ai ) = pi
∏

j∈Ni
(1− pj).

Set Bi = Ai where i ∈ N. Then, for any two disjoint subsets R,S ⊆ N,

P(BR ∩ BS) ≥ P(BR)
∏
i∈S

(1− pi ). (13.15)

In particular, when R = ∅ and S = N,

P
(
∩i∈NAi

)
≥

∏
i∈N

(1− pi ) > 0. (13.16)
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Theorem 13.12. The Local Lemma

Theorem 13.12 (continued 1)

Proof. If S = ∅ then BS = ∩i∈SBi = ∩i∈SAi = Ω (we could take this as
the intersection of no sets) and

∏
i∈S(1− pi ) = 1 (similarly, this could be

taken as the definition of a product of no numbers), so

P(BR ∩ BS) = P(BR ∩ Ω) = P(BR) = P(BR)(1) ≥ P(BR)
∏
i∈S

(1− pi ),

and equation (13.15) holds when S = ∅.

If |S | = 1 and S = {i}, then BS = Bi and
∏

j∈S(1− pj) = 1− pi . Define
R1 = R \ Ni and S1 = R ∩ Ni (so that R = R1 ∪· S1). Then

P(Ai ∩ BR) ≤ P(Ai ∩ BR1) since R1 ⊆ R and so

BR = ∩i∈RAi ⊆ ∩i∈R1Ai = BR1 and Ai ∩ BR ⊆ Ai ∩ BR1

= P(Ai )P(BR1) since Ai is independent of

{Aj | j 6∈ Ni} ⊇ R1 by hypothesis (i). (∗)
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Theorem 13.12. The Local Lemma

Theorem 13.12 (continued 2)

Proof (continued). Since S1 ⊆ Ni ⊆ N, then by hypothesis (ii)

P(Ai ) ≤ pi

∏
j∈Ni

(1− pj) ≤ pi

∏
j∈S1

(1− pj) (∗∗)

for some pi with 0 < pi < 1 and some pj with 0 < pj < 1. In Exercise
13.5.A(i) it is to be shown by induction on |S1| that

P(BR1)
∏
j∈S1

(1− pj) ≤ P(BR1 ∩ BS1). (†)

Therefore

P(Ai ∩ BR) ≤ P(Ai )P(BR1) by (∗)
≤ P(BR1)pi

∏
j∈S1

(1− pj) by (∗∗)

≤ piP(BR1 ∩ BS1) by (†), . . . (††)
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Theorem 13.12. The Local Lemma

Theorem 13.12 (continued 3)

Proof (continued). and so

P(BR ∩ BS) = P(BR ∩ Bi ) since S = {i}
= P(BR)− P(BR ∩ Ai ) since

BR = (BR ∩ Ai ) ∪· (BR ∩ Ai ) = (BR ∩ Ai ) ∪· BR ∩ Bi )

≥ P(BR − piP(BR) by (††)
= P(BR)(1− pi ) = P(BR)

∏
i∈S

(1− pi ),

and equation (13.15) holds when |S | = 1.

If |S | ≥ 2, then let R1 and S1 be nonempty disjoint sets which partition S
so that S = R1 ∪· S1. Then

P(BR ∩ BS) = P(BR ∩ BR1∪S1)

= P(BR ∩ BR1 ∩ BS1) by definition of B’s as intersections

= P(BR∪R1 ∩ BS1) similarly.
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Theorem 13.12. The Local Lemma

Theorem 13.12 (continued 4)

Proof (continued). In Exercise 13.5.A(ii) it is to be shown by induction
on |S1| that

P(BR∪R1 ∩ BS1) ≥ P(BR∪R1)
∏
i∈S1

(1− pi )

= P(BR ∩ BR1)
∏
i∈S1

(1− p)i). (‡)

In Exercise 13.5.A(iii) it is to be shown by induction on |R ∪ R1| that

P(BR ∩ BR1) ≥ P(BR)
∏
i∈R1

(1− pi ). (‡‡)
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Theorem 13.12. The Local Lemma

Theorem 13.12 (continued 5)

Proof (continued).
Therefore

P(BR ∩ BS) = P(BR∪R1 ∩ BS1)

≥ P(BR ∩ BR1)
∏
i∈S1

(1− pi ) by (‡)

≥ P(BR)
∏
i∈R1

(1− pi )
∏
i∈S1

(1− pi ) by (‡‡)

= P(BR)
∏
i∈S

(1− pi ) since S = R1 ∪ S1,

so equation (13.15) holds when |S | ≥ 2 and hence holds for all S and R
subsets of N, as claimed.
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Theorem 13.14. The Local Lemma—Symmetric Version

Theorem 13.14

Theorem 13.14. The Local Lemma—Symmetric Version.
let Ai , where i ∈ N, be events in a finite probability space (Ω,P) having a
dependency graph with maximum degree d . Suppose
P(Ai ) < 1/(e(d + 1)) for all i ∈ N (where “e” here is the base of the
natural log function). Then P(∩i∈NAi ) > 0.

Proof. Set p1 = 1/(d + 1) = p for i ∈ N (this value of p maximizes the
function f (p) = p(1− p)d for p ∈ (0, 1) and will give us a “uniform
bound” on p(Ai ) in hypothesis (ii) of The Local Lemma). Now the sets Ni

are defined from the dependency graph (Ni includes all neighbors of vertex
i in the dependency graph, so we have event Ai is independent of the
events {Aj | j 6∈ Ni}, as required by hypothesis (i) of The Local Lemma).
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Theorem 13.14. The Local Lemma—Symmetric Version

Theorem 13.14 (continued)

Proof (continued). Now

P(Ai ) ≤ 1

e(d + 1)
by hypothesis

≤
(

d

d + 1

)d (
1

d + 1

)
since 1 +

1

d
≤ e1/d by Exercise 13.2.1(b)

with x = 1/d , or (1 + 1/d)d ≤ e or

(
d + 1

d

)d

≤ e

or

(
d

d + 1

)d

≥ 1

e

= p
∏
j∈Ni

(1− p)d since pi = p =
1

d + 1
for all i ∈ N.

So hypothesis (ii) of the Local Lemma holds. Hence, by the Local Lemma
(Theorem 13.12, the “in particular” part), P(∩i∈NAi ) > 0, as claimed.
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Theorem 13.15

Theorem 13.15

Theorem 13.15. Let H = (V ,F) be a hypergraph in which each edge
has at least k elements and meets at most d other edges. If
e(d + 1) ≤ 2k−1 (again, “e” here is the base of the natural log function),
then H is 2-colourable.

Proof. Consider a random 2-colouring of V , where each vertex receives
one of two colours with probability 1/2. For each edge F of H, denote by
AF the event that F is monochomatic. Then events AF and AG are
independent unless edges F and G share vertices. Since an edge of H
meets at most d other edges, then the dependence graph for the events
{AF | F ∈ F} has maximum degree d .

Then P(AF ) ≤ 2 · 1/2k = 21−k

(less than or equal since F has at leastk elements, and times 2 because
there are 2 colours). So P(AF ) ≤ 21−k ≤ 1/(e(d + 1)) and the hypotheses
of the symmetric version of The Local Lemma are satisfied. Hence,
P(∩F∈FAF ) > 0 and , by Note 13.5.A, hence H is 2-colourable.
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Corollary 13.16

Corollary 13.16

Corollary 13.16. Let H = (V ,F) be a k-uniform k-regular hypergraph,
where k ≥ 9. Then H is 2-colourable.

Proof. Since H is k-uniform, then each edge contains exactly k elements
(i.e., vertices), and since H is k-regular then each vertex of H lies on k
edges. So for given edge F of H, F contains k vertices and each lies on
k − 1 edges (along with edge F ), so that edge F meets at most
d = k(k − 1) other edges.

If k ≥ 9 then
e(d + 1) = e(k(k − 1) + 1) ≤ 2k−1 since (1) for k = 9 we have
e(k(k − 1) + 1) = 73e ≈ 198.4, 2k−1 = 256, and (2)
f (x) = 2x−1 − e(x2 − x + 1) has derivative
f ′(x) = (ln 2)2x−1 − e(2x − 1) > 0 for x ≥ 9, so that f is increasing for
x ≥ 9 and hence f (x) ≥ f (9) > 0 for all x ≥ 9. So the hypotheses of
Theorem 13.15 are satisfied and hence H is 2-colourable.
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Theorem 13.17

Theorem 13.17

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k ≥ 8. Then D contains a directed even cycle.

Proof. Consider a random 2-colouring of V , where each vertex receives
one of the two colours with probability 1/2. For each vertex v of D, denote
by Av the event that c(u) = c(v) for all u ∈ N+(v) (that is, Av denotes
the event that all outneighbors of v are the same colour as v). So Av is
independent of all Au such that ({u} ∪ N+(u)) ∩ N+(v) = ∅ (that is, the
outneighbors of v do not include any outneighbors of u nor u itself). Then
Av is dependent on some Au when onr (or more) of the k outneighbors of
v is one of the k outneighbors of u or u itself.

Since D is k-diregular, then
each of the k-outneighbors of v can be an outneighbor of k − 1 other
vertices (along with being an outneighbor of v itself) and is a vertex
associated with some Au, so that each outneighbor of v is associated with
up to k other events dependent on Av . So in the dependency graph of the
event {Av | v ∈ V }, each vertex is of degree at most d = k2.
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Theorem 13.17

Theorem 13.17 (continued 1)

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k ≥ 8. Then D contains a directed even cycle.

Proof (continued). Next, notice that Av is the event that v has an
outneighbor of a different colour. Since v has k outneighbors then
P(Av ) = 1/2k . With d = k2 we have

P(Ai ) =
1

2k
≤ 1

e(d + 1)
=

1

e(k2 + 1)
for k ≥ 8, since (1) for k = 8 we

have 1
2k = 1

28 = 1
256 ≈ 0.0039, 1

e(k2+1)
= 1

65e ≈ 0.0057, and (2)

f (x) =
1

e(x2 + 1)
− 2−x has derivative f ′(x) =

−2x

e(x2 + 1)2
+ (ln 2)2−x > 0

for k ≥ 8 so that f is increasing for x ≥ 8 and hence f (x) ≥ f (8) > 0 for
all x ≥ 8. So the hypotheses of Theorem 3.14 are satisfied and hence
P(∩v∈V Av ) > 0. That is, there is a 2-colouring of V such that every
v ∈ V has an outneighbor of the opposite colour.
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Theorem 13.17

Theorem 13.17 (continued 2)

Theorem 13.17. Let D be a strict (i.e., “simple”) k-diregular digraph
where k ≥ 8. Then D contains a directed even cycle.

Proof (continued). With respect to this colouring, let uPv be a maximal
(length) properly 2-coloured directed path in D and let w be an
outneighbor of v of the opposite colour of v . Since uPv is maximal, then
w must be some vertex of uPv (or else uPvw would be a longer properly
2-coloured path in D). So take the segment of P from w to v (denoted
wPv) and then add the arc from v to w to produce a cycle in D. This
cycle is properly coloured and so is an even length cycle, as claimed.
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Lemma 13.18

Lemma 13.18

Lemma 13.18. Let G = (V ,E ) be a simple graph and let
{V1,V2, . . . ,Vk} be a partition of V into k sets, each of cardinality at
least 2e∆ (again, “e” here is the base of the natural log function). Then
there is a stable set S in G such that |S ∩ Vi | = 1 for 1 ≤ i ≤ k.

Proof. By deleting vertices from G if necessary, we may assume that
|Vi | = t = d2e∆e for 1 ≤ i ≤ k (we’ll show the existence of a stable set S
under these conditions, then the deleted vertices and relevant edges can be
added back in to G and this won’t have an effect on the stability of set S
nor on the intersection property of set S). We select one vertex vi at
random from each set Vi for 1 ≤ i ≤ k, and set S = {v1, v2, . . . , vn}.

For an edge f of G , let Af denote the event that both ends of f belong to
S . Since |Vi | = t for each i then P(Af ) = 1/t2 for all f ∈ E . In Exercise
13.5.A is to be shown that Af is dependent only on those events Ag such
that an end of g lies in the same set Vi as an end of f .
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Lemma 13.18

Lemma 13.18 (continued 1)

Lemma 13.18. Let G = (V ,E ) be a simple graph and let
{V1,V2, . . . ,Vk} be a partition of V into k sets, each of cardinality at
least 2e∆ (again, “e” here is the base of the natural log function). Then
there is a stable set S in G such that |S ∩ Vi | = 1 for 1 ≤ i ≤ k.

Proof (continued). For a given Af where f has its ends in Vi and Vj

(where possibly i = j), there are at most t∆ edges with an end in Vi and
at most t∆ edges with an end in Vj , so that there are at most 2t∆− 1
other events Ag which are dependent on Af . We set d = 2t∆− 1 so that
in the dependency graph for events {Af | f ∈ E} has maximum degree at
most d = 2t∆− 1. Also,

P(Af ) =
1

t2
=

1

td2e∆e
≤ 1

t(2e∆)

=
1

e(2t∆)
=

1

e((2t∆− 1) + 1)
=

1

e(d + 1)
.
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Lemma 13.18

Lemma 13.18 (continued 2)

Lemma 13.18. Let G = (V ,E ) be a simple graph and let
{V1,V2, . . . ,Vk} be a partition of V into k sets, each of cardinality at
least 2e∆ (again, “e” here is the base of the natural log function). Then
there is a stable set S in G such that |S ∩ Vi | = 1 for 1 ≤ i ≤ k.

Proof (continued). So the hypotheses of Theorem 13.14 hold and hence
P(∩f ∈EAf ) > 0. So by Note 13.5.A, there exists a set S which (by
construction) intersects each Vi in one point and each edge f of G has its
ends in different sets Vi and Vj (since Af holds; i.e., f does not have both
ends in the same Vi ). Since S contains exactly one point from each Vi ,
then every edge incident to a vertex in S has its other end outside of S .
That is, S is a stable set, as claimed.
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Theorem 13.19

Theorem 13.19

Theorem 13.19. Let G = (V ,E ) be a simple 2r -regular graph with girth
at least 2e(4r − 2) (again, “e” here is the base of the natural log
function). Then la(G ) = r + 1.

Proof. We saw in Note 13.5.B that la(G ) ≤ r + 1. We now borrow a
result from Section 16.4 (“Perfect Matchings and Factors”): “Every
2r -regular graph admits a decomposition into 2-factors” (this is Exercise
16.4.16).

Consider such a decomposition {F1,F2, . . . ,Fr} of G and let Ci , for
1 ≤ i ≤ k, be the constituent cycles of these 2-factors (since a 2-factor is
a 2-regular graph, then it is a vertex disjoint union of cycles). Define the
edge sets Vi = E (Ci ) for 1 ≤ i ≤ k. The line graph H of G is
(4r − 2)-regular (since each edge of G is adjacent to 2r − 1 other edges at
each of its ends).
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Theorem 13.19

Theorem 13.19 (continued)

Theorem 13.19. Let G = (V ,E ) be a simple 2r -regular graph with girth
at least 2e(4r − 2) (again, “e” here is the base of the natural log
function). Then la(G ) = r + 1.

Proof (continued). Because G has girth at least 2e(4r − 2) by
hypothesis, then the edge sets {V1,V2, . . . ,Vk} partition the vertex set
V (H) into k sets, each of cardinality at least 2e(4r − 2) (since each is the
set of edges of a cycle in G ). So the hypotheses of Lemma 13.18 are
satisfied by the line graph H, so H has a stable set S meeting each set Vi

in one vertex. Define the subgraphs Li = Fi \ S for 1 ≤ i ≤ r . Since Fi is
a collection of vertex disjoint cycles in G and S includes an edge of each
of these cycles, then each Li is a linear forest on G . Also, if we set L0

equal to the subgraph of G which has edge set S and vertex set of all ends
of edges in S (so that L0 is a linear forest where each tree has one edge
because S is a stable set). Then {L0, L1, . . . , Lr} is a decomposition of G
into r + 1 linear forests. So la(G ) = r + 1.
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