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Lemma 14.1.A

Lemma 14.1.A

Lemma 14.1.A. The number of colours needed in the Greedy Colouring
Heuristic (Heuristic 14.3) is at most ∆ + 1. Therefore, for any graph G ,
χ(G ) ≤ ∆ + 1.

Proof. Let G be a graph. At Step 2 of the heuristic, when vertex v is
about to be coloured, the number of its neighbors already coloured is at
most d(v) ≤ ∆. So one of the colours 1, 2, . . . ,∆ + 1 is available to be
assigned to v . Since v is an arbitrary vertex of G , then colours
1, 2, . . . ,∆ + 1 are sufficient for the heuristic. So any graph G is ∆ + 1
colourable and χ(G ) ≤ ∆ + 1, as claimed.
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Theorem 14.4. Brooks’ Theorem

Theorem 14.4. Books’ Theorem

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then χ ≤ ∆.

Proof. First, we consider the case that G is not regular. Let x be a vertex
of (minimum) degree δ and let T be a DFS-tree of G rooted at x . We
colour the vertices with colours 1, 2, . . . ,∆ using the Greedy Colouring
Heuristic (Heuristic 14.3). To apply it, we select at each step a leaf of the
subtree of T induced by the vertices not yet coloured. That is, we use the
spanning DFS-tree T to imply a linear ordering of the vertices of G based
on this sequential idea of using leaves in subtrees of T . Notice that the
root will be the last vertex in the ordering.

When a vertex v 6= x is about to be coloured by the heuristic, it is
adjacent in T to at least one uncoloured vertex and so is adjacent in G to
at most d(v)− 1 coloured vertices (and d(v)− 1 ≤ ∆− 1). So vertex
v 6= x can be assigned one of the colours 1, 2, . . . ,∆.
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Theorem 14.4. Brooks’ Theorem

Theorem 14.4 (continued 1)

Proof (continued). Hence G − x can be properly coloured with ∆
colours. We chose root x to satisfy d(x) = δ ≤ ∆− 1 (notice that δ 6= ∆
since G is not regular; this is where we use the fact that G is not regular).
So x can also be assigned one of the colours 1, 2, . . . ,∆. So the Greedy
Colouring Heuristic applied in this way (with the linear ordering given by
the DFS-tree in fact, any spanning tree rooted at a vertex of degree δ
could be used here) produces a ∆-colouring of G . So if G is not regular,
then the claim holds.

Second we consider the case that G is regular. If G has a cut vertex x then
G = G1 ∪G2 where G1 and G2 are connected and G1 ∩G2 = {x}. Because
the degree of x in G1 and in G2 is less that ∆(G ) (since G is regular then
all vertices of G are of degree ∆), so neither G1 not G2 is regular. So by
the “not regular” case above, χ(Gi ) ≤ ∆(Gi ) = ∆(G ) for i ∈ {a, 2}. Then
by Exercise 14.1.2 we have χ(G ) = max{χ(G1), χ(G2)} ≤ ∆(G ). So the
result holds for G regular with a cut vertex.
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Theorem 14.4. Brooks’ Theorem

Theorem 14.4 (continued 2)

Proof (continued). Hence, without loss of generality we can assume that
G is regular and does not have a cut vertex (that is, G is regular and
2-connected).

If every DFS-tree of G is a Hamilton path rooted at one of its ends, then
by Exercise 6.1.11 (as mentioned above in the notes) G is a cycle, a
complete graph, or a complete bipartite graph Kn,n. By hypothesis, G is
neither an odd cycle nor a complete graph. Since χ(Kn,n) = 2 ≤ ∆(G )
then the result holds for such graphs. (We use the fact that T is a
DFS-tree for the first time here.)

Finally, suppose G is regular, 2-connected, that T is a DFS-tree of G , but
that T is not a path. Let x be a vertex of T with at least two children, y
and z (such x exists since T is not a path; for the genealogical
terminology, which is based on the rooted spanning tree, see Section 6.1.
Tree Search). Since G is 2-connected, then both g − y and G − z are
connected.
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Theorem 14.4. Brooks’ Theorem

Theorem 14.4 (continued 3)

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then χ ≤ ∆.

Proof (continued). Thus y and z are either leaves of T or have proper
descendants in T . If y (respectively z) is a leaf of T then G − y
(respectively G − z) is connected. In the event that y or z have proper
descendants in T , we partition the vertices of G into three sets: those that
are descendants of y , those that are descendants of z , and those that are
neither descendants of y nor descendants of z . These three sets induce
three subtrees of T : the subtree Ty of T rooted at y induced by the
descendants of y , the subtree Tz of T rooted at z induced by the
descendants of z , and the subtree Tr of T induced by the other vertices.
Notice that Tr results from T by “pruning” T by removing edge xy and
Tx , and removing edge xz and Tz . See the figure on the next slide.
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Theorem 14.4. Brooks’ Theorem

Theorem 14.4 (continued 4)

Proof (continued).

In Exercise 14.1.A it is to be shown, using Tr , Ty , and Tz , that
G ′ = G − {y , z} is connected. Since G is regular and to create G′ we
removed two vertices from G , then the most the degree of a vertex can
decrease from G to G ′ is 2, and x satisfies dG (x)− 2 = dG ′(x) so that x is
a vertex of (minimum) degree δ in G ′. Also, G ′ is not regular. Let T ′ by a
DFS-tree rooted at x in G ′.
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Theorem 14.4. Brooks’ Theorem

Theorem 14.4 (continued 5)

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then χ ≤ ∆.

Proof (continued). Notice that y and z are not related (recall that two
vertices are “related” if one is an ancestor of the other) in T . By Theorem
6.6, for T a DFS-tree of G every edge of G joins vertices which are
related, so y and z are not adjacent in G . By the first part of the proof,
the Greedy Colouring Heuristic lets us colour the vertices of T ′, ending
with the root x , giving a ∆-colouring of G ′. Since y and z are not
adjacent adjacent in G , then dG (y) ≤ ∆− 1 and dG (z) ≤ ∆− 1, so we
can assign a colour 1, 2, . . . ,∆ to y and such a colour to z , yielding a
∆-colouring of G . So the case for G a regular graph, the claim holds.
Therefore, the claim holds for all connected graphs that are neither an odd
cycle nor a complete graph.
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Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5. The Gallai-Roy Theorem.
Every digraph D contains a directed path with χ(D) vertices.

Proof. Let k be the number of vertices in a longest directed path of D.
Consider a maximal acyclic subgraph D ′ of D (i.e., D ′ does not contain a
directed cycle and is a subgraph of D with the most arcs which satisfies
this property). Because D ′ is a subgraph of D, each directed path in D ′

has at most k vertices. We k-colour D by assigning to vertex v the colour
c(v), where c(v) ∈ {1, 2, . . . , k} is the number of vertices of a longest
directed path in D ′ starting at v . We claim this vertex colouring is proper.

Let (u, v) be an arbitrary arc of D. (1) If (u, v) is an arc of D ′ then let
vPw be a longest directed v -path in D ′. If u ∈ V (P) then there would be
a directed cycle in D ′ (see the figure below), hence u 6∈ V (P). Thus uvPw
is a directed u-path in D ′ and we have c(u) > c(v).
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Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5 (continued 1)

Proof (continued).

(2) If (u, v) is not an arc of D ′, then D ′ + (u, v) contains a directed cycle
(because D ′ is maximally acyclic), so D ′ contains a directed (v , u)-path P.
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Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5 (continued 2)

Theorem 14.5. The Gallai-Roy Theorem.
Every digraph D contains a directed path with χ(D) vertices.

Proof (continued). Let Q be a longest directed u-path in D ′. Because
D ′ is acyclic, V (P) ∩ V (Q) = {u} (for if there were a second vertex x in
V (P) ∩ V (Q) then there would be a directed cycle in D ′ from u, along Q
to w , then along P back to u; see the figure below).
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Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5 (continued 3)

Theorem 14.5. The Gallai-Roy Theorem.
Every digraph D contains a directed path with χ(D) vertices.
Proof (continued).

Thus PQ is a directed v path in D ′ longer than Q (see the figure above),
so that c(v) > c(u). In both cases, c(u) 6= c(v). Since (u, v) is an
arbitrary arc of D, then the colouring is proper. Since k ≥ χ(D), then D
has a directed path of length (at least) χ(D), as claimed.
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