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Lemma 14.1.A

Lemma 14.1.A

Lemma 14.1.A. The number of colours needed in the Greedy Colouring

Heuristic (Heuristic 14.3) is at most A + 1. Therefore, for any graph G,
X(G) < A+1.
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Lemma 14.1.A

Lemma 14.1.A. The number of colours needed in the Greedy Colouring
Heuristic (Heuristic 14.3) is at most A + 1. Therefore, for any graph G,
x(G) <A+1.

Proof. Let G be a graph. At Step 2 of the heuristic, when vertex v is
about to be coloured, the number of its neighbors already coloured is at
most d(v) < A. So one of the colours 1,2,..., A + 1 is available to be
assigned to v. Since v is an arbitrary vertex of G, then colours

1,2,..., A+ 1 are sufficient for the heuristic. So any graph G is A +1
colourable and x(G) < A + 1, as claimed. O
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Theorem 14.4. Books' Theorem

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then y < A.
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Theorem 14.4. Books' Theorem

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then y < A.

Proof. First, we consider the case that G is not regular. Let x be a vertex
of (minimum) degree § and let T be a DFS-tree of G rooted at x. We
colour the vertices with colours 1,2, ..., A using the Greedy Colouring
Heuristic (Heuristic 14.3). To apply it, we select at each step a leaf of the
subtree of T induced by the vertices not yet coloured. That is, we use the
spanning DFS-tree T to imply a linear ordering of the vertices of G based
on this sequential idea of using leaves in subtrees of T. Notice that the
root will be the last vertex in the ordering.
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Theorem 14.4. Books' Theorem

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then y < A.

Proof. First, we consider the case that G is not regular. Let x be a vertex
of (minimum) degree § and let T be a DFS-tree of G rooted at x. We
colour the vertices with colours 1,2, ..., A using the Greedy Colouring
Heuristic (Heuristic 14.3). To apply it, we select at each step a leaf of the
subtree of T induced by the vertices not yet coloured. That is, we use the
spanning DFS-tree T to imply a linear ordering of the vertices of G based
on this sequential idea of using leaves in subtrees of T. Notice that the
root will be the last vertex in the ordering.

When a vertex v # x is about to be coloured by the heuristic, it is
adjacent in T to at least one uncoloured vertex and so is adjacent in G to
at most d(v) — 1 coloured vertices (and d(v) —1 < A —1). So vertex

v # x can be assigned one of the colours 1,2,... A.
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Theorem 14.4 (continued 1)

Proof (continued). Hence G — x can be properly coloured with A
colours. We chose root x to satisfy d(x) =0 < A — 1 (notice that § # A
since G is not regular; this is where we use the fact that G is not regular).
So x can also be assigned one of the colours 1,2,..., A. So the Greedy
Colouring Heuristic applied in this way (with the linear ordering given by
the DFS-tree in fact, any spanning tree rooted at a vertex of degree §
could be used here) produces a A-colouring of G. So if G is not regular,
then the claim holds.
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Theorem 14.4 (continued 1)

Proof (continued). Hence G — x can be properly coloured with A
colours. We chose root x to satisfy d(x) =0 < A — 1 (notice that § # A
since G is not regular; this is where we use the fact that G is not regular).
So x can also be assigned one of the colours 1,2,..., A. So the Greedy
Colouring Heuristic applied in this way (with the linear ordering given by
the DFS-tree in fact, any spanning tree rooted at a vertex of degree §
could be used here) produces a A-colouring of G. So if G is not regular,
then the claim holds.

Second we consider the case that G is regular. If G has a cut vertex x then
G = G1 U Gy where Gy and Gy are connected and G; N Gy = {x}. Because
the degree of x in Gy and in Gy is less that A(G) (since G is regular then
all vertices of G are of degree A), so neither G; not G; is regular. So by
the “not regular” case above, x(G;) < A(G;) = A(G) for i € {a,2}. Then
by Exercise 14.1.2 we have x(G) = max{x(Gi1), x(G2)} < A(G). So the
result holds for G regular with a cut vertex.

Graph Theory April 14,2023 5/ 13



Theorem 14.4 (continued 2)

Proof (continued). Hence, without loss of generality we can assume that
G is regular and does not have a cut vertex (that is, G is regular and
2-connected).
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Theorem 14.4 (continued 2)

Proof (continued). Hence, without loss of generality we can assume that
G is regular and does not have a cut vertex (that is, G is regular and
2-connected).

If every DFS-tree of G is a Hamilton path rooted at one of its ends, then
by Exercise 6.1.11 (as mentioned above in the notes) G is a cycle, a
complete graph, or a complete bipartite graph K, ,. By hypothesis, G is
neither an odd cycle nor a complete graph. Since x(Knn) =2 < A(G)
then the result holds for such graphs. (We use the fact that T is a
DFS-tree for the first time here.)
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Theorem 14.4 (continued 2)

Proof (continued). Hence, without loss of generality we can assume that
G is regular and does not have a cut vertex (that is, G is regular and
2-connected).

If every DFS-tree of G is a Hamilton path rooted at one of its ends, then
by Exercise 6.1.11 (as mentioned above in the notes) G is a cycle, a
complete graph, or a complete bipartite graph K, ,. By hypothesis, G is
neither an odd cycle nor a complete graph. Since x(Knn) =2 < A(G)
then the result holds for such graphs. (We use the fact that T is a
DFS-tree for the first time here.)

Finally, suppose G is regular, 2-connected, that T is a DFS-tree of G, but
that T is not a path. Let x be a vertex of T with at least two children, y
and z (such x exists since T is not a path; for the genealogical
terminology, which is based on the rooted spanning tree, see Section 6.1.
Tree Search). Since G is 2-connected, then both g — y and G — z are
connected.
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Theorem 14.4 (continued 3)

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then y < A.

Proof (continued). Thus y and z are either leaves of T or have proper
descendants in T. If y (respectively z) is a leaf of T then G —y
(respectively G — z) is connected. In the event that y or z have proper
descendants in T, we partition the vertices of G into three sets: those that
are descendants of y, those that are descendants of z, and those that are
neither descendants of y nor descendants of z.
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Theorem 14.4 (continued 3)

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then y < A.

Proof (continued). Thus y and z are either leaves of T or have proper
descendants in T. If y (respectively z) is a leaf of T then G —y
(respectively G — z) is connected. In the event that y or z have proper
descendants in T, we partition the vertices of G into three sets: those that
are descendants of y, those that are descendants of z, and those that are
neither descendants of y nor descendants of z. These three sets induce
three subtrees of T: the subtree T, of T rooted at y induced by the
descendants of y, the subtree T, of T rooted at z induced by the
descendants of z, and the subtree T, of T induced by the other vertices.
Notice that T, results from T by “pruning” T by removing edge xy and
T, and removing edge xz and T,. See the figure on the next slide.
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Theorem 14.4 (continued 4)

Proof (continued).

In Exercise 14.1.A it is to be shown, using T,, T,, and T, that

G' = G —{y, z} is connected. Since G is regular and to create G, we
removed two vertices from G, then the most the degree of a vertex can
decrease from G to G’ is 2, and x satisfies dg(x) — 2 = dg/(x) so that x is
a vertex of (minimum) degree 0 in G'. Also, G’ is not regular. Let T' by a
DFS-tree rooted at x in G.
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Theorem 14.4 (continued 5)

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then y < A.

Proof (continued). Notice that y and z are not related (recall that two
vertices are "related” if one is an ancestor of the other) in T. By Theorem
6.6, for T a DFS-tree of G every edge of G joins vertices which are
related, so y and z are not adjacent in G.
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Theorem 14.4 (continued 5)

Theorem 14.4. Brooks’ Theorem.
If G is a connected graph, and is neither an odd cycle nor a complete
graph, then y < A.

Proof (continued). Notice that y and z are not related (recall that two
vertices are "related” if one is an ancestor of the other) in T. By Theorem
6.6, for T a DFS-tree of G every edge of G joins vertices which are
related, so y and z are not adjacent in G. By the first part of the proof,
the Greedy Colouring Heuristic lets us colour the vertices of T', ending
with the root x, giving a A-colouring of G’. Since y and z are not
adjacent adjacent in G, then dg(y) < A —1and dg(z) <A —1, sowe
can assign a colour 1,2,..., A to y and such a colour to z, yielding a
A-colouring of G. So the case for G a regular graph, the claim holds.
Therefore, the claim holds for all connected graphs that are neither an odd
cycle nor a complete graph. O
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Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5. The Gallai-Roy Theorem.
Every digraph D contains a directed path with x(D) vertices.

Graph Theory Rl i1, G

10 /13



Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5. The Gallai-Roy Theorem.
Every digraph D contains a directed path with x(D) vertices.

Proof. Let k be the number of vertices in a longest directed path of D.
Consider a maximal acyclic subgraph D’ of D (i.e., D' does not contain a
directed cycle and is a subgraph of D with the most arcs which satisfies
this property). Because D’ is a subgraph of D, each directed path in D’
has at most k vertices. We k-colour D by assigning to vertex v the colour
c(v), where c(v) € {1,2,..., k} is the number of vertices of a longest
directed path in D’ starting at v. We claim this vertex colouring is proper.
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Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5. The Gallai-Roy Theorem.
Every digraph D contains a directed path with x(D) vertices.

Proof. Let k be the number of vertices in a longest directed path of D.
Consider a maximal acyclic subgraph D’ of D (i.e., D' does not contain a
directed cycle and is a subgraph of D with the most arcs which satisfies
this property). Because D’ is a subgraph of D, each directed path in D’
has at most k vertices. We k-colour D by assigning to vertex v the colour
c(v), where c(v) € {1,2,..., k} is the number of vertices of a longest
directed path in D’ starting at v. We claim this vertex colouring is proper.

Let (u, v) be an arbitrary arc of D. (1) If (u,v) is an arc of D’ then let
vPw be a longest directed v-path in D’. If u € V/(P) then there would be
a directed cycle in D’ (see the figure below), hence u ¢ V(P). Thus uvPw
is a directed u-path in D’ and we have c(u) > c(v).
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Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5 (continued 1)

Proof (continued).

vPw
u v v w
Arcin D’ Longest directed v-path in D’
o—O0—>— ..« =0
g e g_)_ vee —>0O u v w
v u w

For u € V(P) then there is a directed cycle in D'

Ifu € V(P), there is a u-path in D’
longer than vPw, implying c(u) > c(v).

(2) If (u,v) is not an arc of D', then D’ + (u, v) contains a directed cycle
(because D’ is maximally acyclic), so D’ contains a directed (v, u)-path P.

O———-O0
u v

Arc in D but
notin D’

Since D' is maximally acyclic then
D'+ (u,v)' contains a directed cycle.
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Theorem 14.5. The Gallai-Roy Theorem

Theorem 14.5 (continued 2)

Theorem 14.5. The Gallai-Roy Theorem.
Every digraph D contains a directed path with x(D) vertices.

Proof (continued). Let Q be a longest directed u-path in D’. Because

D' is acyclic, V(P) N V(Q) = {u} (for if there were a second vertex x in
V(P) N V(Q) then there would be a directed cycle in D’ from u, along @
to w, then along P back to u; see the figure below).

Oz

= vPu

-

Ifu #x € V(P) N V(Q) then there is a
cycle in D',
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Theorem 14.5 (continued 3)

Theorem 14.5. The Gallai-Roy Theorem.
Every digraph D contains a directed path with x(D) vertices.
Proof (continued).

Oz

= vPu

Y

Directed v-path vPuQz = in D' is
longer than the longest u-path, Q,inD'".
Thus PQ is a directed v path in D’ longer than Q (see the figure above),
so that ¢(v) > c¢(u). In both cases, c(u) # c(v). Since (u,v) is an
arbitrary arc of D, then the colouring is proper. Since k > x(D), then D
has a directed path of length (at least) x(D), as claimed. O
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