Graph Theory

Chapter 14. Vertex Colourings

14.2. Critical Graphs—Proofs of Theorems

Table of contents

(1) Theorem 14.7
(2) Theorem 14.8
(3) Theorem 14.10

Theorem 14.7

Theorem 14.7. If G is k-critical then $\delta \geq k-1$.

Proof. Let G be k-critical. ASSUME $\delta<k-1$. Let v be a vertex of degree δ in G. Since G is k-critical, then $G-v$ is $(k-1)$-colourable (since we are removing only one vertex then the number of colours required to properly colour $G-v$ is at most one less; since G is k-critical, it is exactly one less). Let $\left\{V_{1}, V_{2}, \ldots, V_{k-1}\right\}$ be the colour classes of a ($k-1$)-colouring of $G-v$.

Theorem 14.7

Theorem 14.7. If G is k-critical then $\delta \geq k-1$.

Proof. Let G be k-critical. ASSUME $\delta<k-1$. Let v be a vertex of degree δ in G. Since G is k-critical, then $G-v$ is $(k-1)$-colourable (since we are removing only one vertex then the number of colours required to properly colour $G-v$ is at most one less; since G is k-critical, it is exactly one less). Let $\left\{V_{1}, V_{2}, \ldots, V_{k-1}\right\}$ be the colour classes of a $(k-1)$-colouring of $G-v$. The vertex v is adjacent to $\delta<k-1$ vertices. So there is some colour class V_{j} such that v is not adjacent to any vertex of V_{j}. But then $\left\{V_{1}, V_{2}, \ldots, V_{j} \cup\{v\}, \ldots, V_{k-1}\right\}$ is a $(k-1)$-colouring of G, a CONTRADICTION. So the assumption that $\delta<k-1$ is false and hence $\delta \geq j-1$, as claimed.

Theorem 14.7

Theorem 14.7. If G is k-critical then $\delta \geq k-1$.

Proof. Let G be k-critical. ASSUME $\delta<k-1$. Let v be a vertex of degree δ in G. Since G is k-critical, then $G-v$ is $(k-1)$-colourable (since we are removing only one vertex then the number of colours required to properly colour $G-v$ is at most one less; since G is k-critical, it is exactly one less). Let $\left\{V_{1}, V_{2}, \ldots, V_{k-1}\right\}$ be the colour classes of a $(k-1)$-colouring of $G-v$. The vertex v is adjacent to $\delta<k-1$ vertices. So there is some colour class V_{j} such that v is not adjacent to any vertex of V_{j}. But then $\left\{V_{1}, V_{2}, \ldots, V_{j} \cup\{v\}, \ldots, V_{k-1}\right\}$ is a $(k-1)$-colouring of G, a CONTRADICTION. So the assumption that $\delta<k-1$ is false and hence $\delta \geq j-1$, as claimed.

Theorem 14.8

Theorem 14.8. No critical graph has a clique cut.

Proof. Let G be a k-critical graph. ASSUME that G has a clique cut S Denote the S-components of G by $G_{1}, G_{2}, \ldots, G_{t}$. Since G is k-critical, each G_{i} is $(k-1)$-colourable (though maybe not ($k-1$)-chromatic). Since S is assumed to be a clique, then the vertices of S receive distinct colours in any $(k-1)$-colouring of G_{i}.

Theorem 14.8

Theorem 14.8. No critical graph has a clique cut.

Proof. Let G be a k-critical graph. ASSUME that G has a clique cut S. Denote the S-components of G by $G_{1}, G_{2}, \ldots, G_{t}$. Since G is k-critical, each G_{i} is $(k-1)$-colourable (though maybe not $(k-1)$-chromatic). Since S is assumed to be a clique, then the vertices of S receive distinct colours in any $(k-1)$-colouring of G_{i}. Choose the $(k-1)$-colourings of $G_{1}, G_{2}, \ldots, G_{t}$ so that they agree on S. But when these are combined, $G=C_{1} \cup G_{2} \cup \cdots \cup G_{t}$, we get a $(k-1)$-colouring of G. But this is a CONTRADICTION because $\chi(G)=k$. So the assumption that G has a clique cut is false, and so critical graph G has no clique cut, as claimed.

Theorem 14.8

Theorem 14.8. No critical graph has a clique cut.

Proof. Let G be a k-critical graph. ASSUME that G has a clique cut S. Denote the S-components of G by $G_{1}, G_{2}, \ldots, G_{t}$. Since G is k-critical, each G_{i} is $(k-1)$-colourable (though maybe not $(k-1)$-chromatic). Since S is assumed to be a clique, then the vertices of S receive distinct colours in any $(k-1)$-colouring of G_{i}. Choose the $(k-1)$-colourings of $G_{1}, G_{2}, \ldots, G_{t}$ so that they agree on S. But when these are combined, $G=C_{1} \cup G_{2} \cup \cdots \cup G_{t}$, we get a $(k-1)$-colouring of G. But this is a CONTRADICTION because $\chi(G)=k$. So the assumption that G has a clique cut is false, and so critical graph G has no clique cut, as claimed.

Theorem 14.10

Theorem 14.10. Let G be a k-critical graph with a 2 -vertex cut set $\{u, v\}$, and let e be a new edge joining u and v. Then
(1) $G=G_{1} \cup G_{2}$, where G_{i} is a $\{u, v\}$-component of G of Type i for $i \in\{1,2\}$,
(2) both $H_{1}=G_{1}+e$ and $H_{2}=G_{2} /\{u, v\}$ are k critical.

Proof. For (1), because G is k-critical then each $\{u, v\}$-component of G is $(k-1)$-colourable. There cannot be $(k-1)$-colourings of the $\{u, v\}$-components all of which agree on $\{u, v\}$, since this would imply a $(k-1)$-colouring of G. Therefore there are two $\{u, v\}$-components G_{1} and G_{2} such that no $(k-1)$-colouring of G_{1} agrees with any $(k-1)$-colouring of G_{2}

Theorem 14.10

Theorem 14.10. Let G be a k-critical graph with a 2 -vertex cut set $\{u, v\}$, and let e be a new edge joining u and v. Then
(1) $G=G_{1} \cup G_{2}$, where G_{i} is a $\{u, v\}$-component of G of Type i for $i \in\{1,2\}$,
(2) both $H_{1}=G_{1}+e$ and $H_{2}=G_{2} /\{u, v\}$ are k critical.

Proof. For (1), because G is k-critical then each $\{u, v\}$-component of G is $(k-1)$-colourable. There cannot be $(k-1)$-colourings of the $\{u, v\}$-components all of which agree on $\{u, v\}$, since this would imply a $(k-1)$-colouring of G. Therefore there are two $\{u, v\}$-components G_{1} and G_{2} such that no $(k-1)$-colouring of G_{1} agrees with any $(k-1)$-colouring of G_{2}. This implies that one component, say G_{1}, is of Type 1 and the other, say G_{2}, is of Type 2; notice that if both are Type 1 with u and v colour i in one component and u and v colour j in the other then the colours i and j can be interchanged in one of the components to produce colourings that agree (and the case of both being Type 2 is similarly resolved).

Theorem 14.10

Theorem 14.10. Let G be a k-critical graph with a 2 -vertex cut set $\{u, v\}$, and let e be a new edge joining u and v. Then
(1) $G=G_{1} \cup G_{2}$, where G_{i} is a $\{u, v\}$-component of G of Type i for $i \in\{1,2\}$,
(2) both $H_{1}=G_{1}+e$ and $H_{2}=G_{2} /\{u, v\}$ are k critical.

Proof. For (1), because G is k-critical then each $\{u, v\}$-component of G is $(k-1)$-colourable. There cannot be $(k-1)$-colourings of the $\{u, v\}$-components all of which agree on $\{u, v\}$, since this would imply a $(k-1)$-colouring of G. Therefore there are two $\{u, v\}$-components G_{1} and G_{2} such that no $(k-1)$-colouring of G_{1} agrees with any $(k-1)$-colouring of G_{2}. This implies that one component, say G_{1}, is of Type 1 and the other, say G_{2}, is of Type 2; notice that if both are Type 1 with u and v colour i in one component and u and v colour j in the other, then the colours i and j can be interchanged in one of the components to produce colourings that agree (and the case of both being Type 2 is similarly resolved).

Theorem 14.10 (continued 1)

Proof (continued). Since G is k-critical then we must have $G=G_{1} \cup G_{2}$, as claimed. (Notice that $G=G_{1} \cup G_{2}$ implies that G does not have an edge joining u and v.)

For (2), because G_{1} is of Type $1, H_{1}=G_{1}+e$ is k-chromatic (since a ($k-1$)-colouring of G_{1} only exists when u and v are the same colour). Let f be any edge of H_{1} (we show that $H_{1} \backslash f$ is $(k-1)$-colourable, and hence H_{1} is k-critical). If $f=e$ then $H_{1} \backslash f=H_{1} \backslash e=G_{1}$ and so $H_{1} \backslash f$ is $(k-1)$-colourable. Let f be any edge of H_{1} other than e (so f is an edge of G_{1}). Any $(k-1)$-colouring of $G \backslash f$ yields a $(k-1)$-colouring of G_{2} and so u and v must receive different colours (since G_{2} is Type 2 by (1)).

Theorem 14.10 (continued 1)

Proof (continued). Since G is k-critical then we must have $G=G_{1} \cup G_{2}$, as claimed. (Notice that $G=G_{1} \cup G_{2}$ implies that G does not have an edge joining u and v.)

For (2), because G_{1} is of Type $1, H_{1}=G_{1}+e$ is k-chromatic (since a ($k-1$)-colouring of G_{1} only exists when u and v are the same colour). Let f be any edge of H_{1} (we show that $H_{1} \backslash f$ is $(k-1)$-colourable, and hence H_{1} is k-critical). If $f=e$ then $H_{1} \backslash f=H_{1} \backslash e=G_{1}$ and so $H_{1} \backslash f$ is ($k-1$)-colourable. Let f be any edge of H_{1} other than e (so f is an edge of G_{1}). Any ($k-1$)-colouring of $G \backslash f$ yields a ($k-1$)-colouring of G_{2} and so u and v must receive different colours (since G_{2} is Type 2 by (1)). The restriction of such a colouring to G_{1} is a ($k-1$)-colouring of $H_{1} \backslash f$. So any proper subgraph of H_{1} is properly colourable with at most $k-1$ colours and hence H_{1} is k-critical, as claimed. We can similarly show that H_{2} is k-critical by considering $H_{2} \backslash f$ where f is any edge of H_{2}.

Theorem 14.10 (continued 1)

Proof (continued). Since G is k-critical then we must have $G=G_{1} \cup G_{2}$, as claimed. (Notice that $G=G_{1} \cup G_{2}$ implies that G does not have an edge joining u and v.)

For (2), because G_{1} is of Type $1, H_{1}=G_{1}+e$ is k-chromatic (since a ($k-1$)-colouring of G_{1} only exists when u and v are the same colour). Let f be any edge of H_{1} (we show that $H_{1} \backslash f$ is $(k-1)$-colourable, and hence H_{1} is k-critical). If $f=e$ then $H_{1} \backslash f=H_{1} \backslash e=G_{1}$ and so $H_{1} \backslash f$ is ($k-1$)-colourable. Let f be any edge of H_{1} other than e (so f is an edge of G_{1}). Any ($k-1$)-colouring of $G \backslash f$ yields a ($k-1$)-colouring of G_{2} and so u and v must receive different colours (since G_{2} is Type 2 by (1)). The restriction of such a colouring to G_{1} is a $(k-1)$-colouring of $H_{1} \backslash f$. So any proper subgraph of H_{1} is properly colourable with at most $k-1$ colours and hence H_{1} is k-critical, as claimed. We can similarly show that H_{2} is k-critical by considering $H_{2} \backslash f$ where f is any edge of H_{2}.

