Graph Theory

Chapter 14. Vertex Colourings 14.2. Critical Graphs—Proofs of Theorems

Theorem 14.7. If G is k-critical then $\delta \ge k - 1$.

Proof. Let *G* be *k*-critical. ASSUME $\delta < k - 1$. Let *v* be a vertex of degree δ in *G*. Since *G* is *k*-critical, then G - v is (k - 1)-colourable (since we are removing only one vertex then the number of colours required to properly colour G - v is at most one less; since *G* is *k*-critical, it is exactly one less). Let $\{V_1, V_2, \ldots, V_{k-1}\}$ be the colour classes of a (k - 1)-colouring of G - v.

Graph Theory

Theorem 14.7. If G is k-critical then $\delta \ge k - 1$.

Proof. Let *G* be *k*-critical. ASSUME $\delta < k - 1$. Let *v* be a vertex of degree δ in *G*. Since *G* is *k*-critical, then G - v is (k - 1)-colourable (since we are removing only one vertex then the number of colours required to properly colour G - v is at most one less; since *G* is *k*-critical, it is exactly one less). Let $\{V_1, V_2, \ldots, V_{k-1}\}$ be the colour classes of a (k - 1)-colouring of G - v. The vertex *v* is adjacent to $\delta < k - 1$ vertices. So there is some colour class V_j such that *v* is not adjacent to any vertex of V_j . But then $\{V_1, V_2, \ldots, V_j \cup \{v\}, \ldots, V_{k-1}\}$ is a (k - 1)-colouring of *G*, a CONTRADICTION. So the assumption that $\delta < k - 1$ is false and hence $\delta \ge j - 1$, as claimed.

Theorem 14.7. If G is k-critical then $\delta \ge k - 1$.

Proof. Let *G* be *k*-critical. ASSUME $\delta < k - 1$. Let *v* be a vertex of degree δ in *G*. Since *G* is *k*-critical, then G - v is (k - 1)-colourable (since we are removing only one vertex then the number of colours required to properly colour G - v is at most one less; since *G* is *k*-critical, it is exactly one less). Let $\{V_1, V_2, \ldots, V_{k-1}\}$ be the colour classes of a (k - 1)-colouring of G - v. The vertex *v* is adjacent to $\delta < k - 1$ vertices. So there is some colour class V_j such that *v* is not adjacent to any vertex of V_j . But then $\{V_1, V_2, \ldots, V_j \cup \{v\}, \ldots, V_{k-1}\}$ is a (k - 1)-colouring of *G*, a CONTRADICTION. So the assumption that $\delta < k - 1$ is false and hence $\delta \ge j - 1$, as claimed.

()

Theorem 14.8. No critical graph has a clique cut.

Proof. Let G be a k-critical graph. ASSUME that G has a clique cut S. Denote the S-components of G by G_1, G_2, \ldots, G_t . Since G is k-critical, each G_i is (k-1)-colourable (though maybe not (k-1)-chromatic). Since S is assumed to be a clique, then the vertices of S receive distinct colours in any (k-1)-colouring of G_i .

Graph Theory

Theorem 14.8. No critical graph has a clique cut.

Proof. Let *G* be a *k*-critical graph. ASSUME that *G* has a clique cut *S*. Denote the *S*-components of *G* by G_1, G_2, \ldots, G_t . Since *G* is *k*-critical, each G_i is (k-1)-colourable (though maybe not (k-1)-chromatic). Since *S* is assumed to be a clique, then the vertices of *S* receive distinct colours in any (k-1)-colouring of G_i . Choose the (k-1)-colourings of G_1, G_2, \ldots, G_t so that they agree on *S*. But when these are combined, $G = C_1 \cup G_2 \cup \cdots \cup G_t$, we get a (k-1)-colouring of *G*. But this is a CONTRADICTION because $\chi(G) = k$. So the assumption that *G* has a clique cut is false, and so critical graph *G* has no clique cut, as claimed.

Theorem 14.8. No critical graph has a clique cut.

Proof. Let *G* be a *k*-critical graph. ASSUME that *G* has a clique cut *S*. Denote the *S*-components of *G* by G_1, G_2, \ldots, G_t . Since *G* is *k*-critical, each G_i is (k-1)-colourable (though maybe not (k-1)-chromatic). Since *S* is assumed to be a clique, then the vertices of *S* receive distinct colours in any (k-1)-colouring of G_i . Choose the (k-1)-colourings of G_1, G_2, \ldots, G_t so that they agree on *S*. But when these are combined, $G = C_1 \cup G_2 \cup \cdots \cup G_t$, we get a (k-1)-colouring of *G*. But this is a CONTRADICTION because $\chi(G) = k$. So the assumption that *G* has a clique cut is false, and so critical graph *G* has no clique cut, as claimed.

Graph Theory

Theorem 14.10. Let G be a k-critical graph with a 2-vertex cut set $\{u, v\}$, and let e be a new edge joining u and v. Then

(1) $G = G_1 \cup G_2$, where G_i is a $\{u, v\}$ -component of G of Type i for $i \in \{1, 2\}$,

(2) both $H_1 = G_1 + e$ and $H_2 = G_2/\{u, v\}$ are k critical.

Proof. For (1), because *G* is *k*-critical then each $\{u, v\}$ -component of *G* is (k-1)-colourable. There cannot be (k-1)-colourings of the $\{u, v\}$ -components all of which agree on $\{u, v\}$, since this would imply a (k-1)-colouring of *G*. Therefore there are two $\{u, v\}$ -components G_1 and G_2 such that no (k-1)-colouring of G_1 agrees with any (k-1)-colouring of G_2 .

Theorem 14.10. Let G be a k-critical graph with a 2-vertex cut set $\{u, v\}$, and let e be a new edge joining u and v. Then

(1) $G = G_1 \cup G_2$, where G_i is a $\{u, v\}$ -component of G of Type i for $i \in \{1, 2\}$,

(2) both $H_1 = G_1 + e$ and $H_2 = G_2 / \{u, v\}$ are *k* critical.

Proof. For (1), because G is k-critical then each $\{u, v\}$ -component of G is (k-1)-colourable. There cannot be (k-1)-colourings of the $\{u, v\}$ -components all of which agree on $\{u, v\}$, since this would imply a (k-1)-colouring of G. Therefore there are two $\{u, v\}$ -components G_1 and G_2 such that no (k-1)-colouring of G_1 agrees with any (k-1)-colouring of G_2 . This implies that one component, say G_1 , is of Type 1 and the other, say G_2 , is of Type 2; notice that if both are Type 1 with u and v colour *i* in one component and u and v colour *j* in the other, then the colours i and j can be interchanged in one of the components to produce colourings that agree (and the case of both being Type 2 is similarly resolved).

C

Theorem 14.10. Let G be a k-critical graph with a 2-vertex cut set $\{u, v\}$, and let e be a new edge joining u and v. Then

(1) $G = G_1 \cup G_2$, where G_i is a $\{u, v\}$ -component of G of Type i for $i \in \{1, 2\}$,

(2) both $H_1 = G_1 + e$ and $H_2 = G_2 / \{u, v\}$ are *k* critical.

Proof. For (1), because G is k-critical then each $\{u, v\}$ -component of G is (k-1)-colourable. There cannot be (k-1)-colourings of the $\{u, v\}$ -components all of which agree on $\{u, v\}$, since this would imply a (k-1)-colouring of G. Therefore there are two $\{u, v\}$ -components G_1 and G_2 such that no (k-1)-colouring of G_1 agrees with any (k-1)-colouring of G_2 . This implies that one component, say G_1 , is of Type 1 and the other, say G_2 , is of Type 2; notice that if both are Type 1 with u and v colour i in one component and u and v colour j in the other, then the colours i and j can be interchanged in one of the components to produce colourings that agree (and the case of both being Type 2 is similarly resolved).

Theorem 14.10 (continued 1)

Proof (continued). Since G is k-critical then we must have $G = G_1 \cup G_2$, as claimed. (Notice that $G = G_1 \cup G_2$ implies that G does not have an edge joining u and v.)

For (2), because G_1 is of Type 1, $H_1 = G_1 + e$ is k-chromatic (since a (k-1)-colouring of G_1 only exists when u and v are the same colour). Let f be any edge of H_1 (we show that $H_1 \setminus f$ is (k-1)-colourable, and hence H_1 is k-critical). If f = e then $H_1 \setminus f = H_1 \setminus e = G_1$ and so $H_1 \setminus f$ is (k-1)-colourable. Let f be any edge of H_1 other than e (so f is an edge of G_1). Any (k-1)-colouring of $G \setminus f$ yields a (k-1)-colouring of G_2 and so u and v must receive different colours (since G_2 is Type 2 by (1)).

Theorem 14.10 (continued 1)

Proof (continued). Since G is k-critical then we must have $G = G_1 \cup G_2$, as claimed. (Notice that $G = G_1 \cup G_2$ implies that G does not have an edge joining u and v.)

For (2), because G_1 is of Type 1, $H_1 = G_1 + e$ is k-chromatic (since a (k-1)-colouring of G_1 only exists when u and v are the same colour). Let f be any edge of H_1 (we show that $H_1 \setminus f$ is (k-1)-colourable, and hence H_1 is k-critical). If f = e then $H_1 \setminus f = H_1 \setminus e = G_1$ and so $H_1 \setminus f$ is (k-1)-colourable. Let f be any edge of H_1 other than e (so f is an edge of G_1). Any (k-1)-colouring of $G \setminus f$ yields a (k-1)-colouring of G_2 and so u and v must receive different colours (since G_2 is Type 2 by (1)). The restriction of such a colouring to G_1 is a (k-1)-colouring of $H_1 \setminus f$. So any proper subgraph of H_1 is properly colourable with at most k-1colours and hence H_1 is k-critical, as claimed. We can similarly show that H_2 is k-critical by considering $H_2 \setminus f$ where f is any edge of H_2 .

Theorem 14.10 (continued 1)

Proof (continued). Since G is k-critical then we must have $G = G_1 \cup G_2$, as claimed. (Notice that $G = G_1 \cup G_2$ implies that G does not have an edge joining u and v.)

For (2), because G_1 is of Type 1, $H_1 = G_1 + e$ is k-chromatic (since a (k-1)-colouring of G_1 only exists when u and v are the same colour). Let f be any edge of H_1 (we show that $H_1 \setminus f$ is (k-1)-colourable, and hence H_1 is k-critical). If f = e then $H_1 \setminus f = H_1 \setminus e = G_1$ and so $H_1 \setminus f$ is (k-1)-colourable. Let f be any edge of H_1 other than e (so f is an edge of G_1). Any (k-1)-colouring of $G \setminus f$ yields a (k-1)-colouring of G_2 and so u and v must receive different colours (since G_2 is Type 2 by (1)). The restriction of such a colouring to G_1 is a (k-1)-colouring of $H_1 \setminus f$. So any proper subgraph of H_1 is properly colourable with at most k-1colours and hence H_1 is k-critical, as claimed. We can similarly show that H_2 is k-critical by considering $H_2 \setminus f$ where f is any edge of H_2 .