Graph Theory

Chapter 14. Vertex Colourings

14.3. Girth and Chromatic Number-Proofs of Theorems

Table of contents

(1) Theorem 14.11
(2) Theorem 14.12

Theorem 14.11

Theorem 14.11. For each positive integer k, there exists a graph with girth at least k and chromatic number at least k.

Proof. Let positive integer k be given. Recall that $\mathcal{G}_{n, p}$ denotes the probability space of all graphs on n vertices where any two given vertices of a graph are adjacent wih (fixed) probability p (see Section 13.1 Random Graphs). Consider $G \in \mathcal{G}_{n, p}$ and define t as $t=\left\lceil 2 p^{-1} \log n\right\rceil$. By Theorem 13.6, almost surely the stability number α satisfies $\alpha(t) \leq t$.

Theorem 14.11

Theorem 14.11. For each positive integer k, there exists a graph with girth at least k and chromatic number at least k.

Proof. Let positive integer k be given. Recall that $\mathcal{G}_{n, p}$ denotes the probability space of all graphs on n vertices where any two given vertices of a graph are adjacent wih (fixed) probability p (see Section 13.1. Random Graphs). Consider $G \in \mathcal{G}_{n, p}$ and define t as $t=\left\lceil 2 p^{-1} \log n\right\rceil$. By Theorem 13.6, almost surely the stability number α satisfies $\alpha(t) \leq t$. Let X be the number of cycles of G of length less than k. The expected number of cycles of length i can be computed by first choosing a first vertex, a second vertex, ... , and an ith vertex, which can be done in $n(n-1)(n-2) \cdots(n-i+1)$ ways. Next, we observe that any vertex can act as the "first" vertex of a cycle, so we must divide by the length of the cycle, i. Also, the order of the vertices can be reversed and still yield the same cycle so we also divide by 2 .

Theorem 14.11

Theorem 14.11. For each positive integer k, there exists a graph with girth at least k and chromatic number at least k.

Proof. Let positive integer k be given. Recall that $\mathcal{G}_{n, p}$ denotes the probability space of all graphs on n vertices where any two given vertices of a graph are adjacent wih (fixed) probability p (see Section 13.1. Random Graphs). Consider $G \in \mathcal{G}_{n, p}$ and define t as $t=\left\lceil 2 p^{-1} \log n\right\rceil$. By Theorem 13.6, almost surely the stability number α satisfies $\alpha(t) \leq t$. Let X be the number of cycles of G of length less than k. The expected number of cycles of length i can be computed by first choosing a first vertex, a second vertex, ..., and an ith vertex, which can be done in $n(n-1)(n-2) \cdots(n-i+1)$ ways. Next, we observe that any vertex can act as the "first" vertex of a cycle, so we must divide by the length of the cycle, i. Also, the order of the vertices can be reversed and still yield the same cycle so we also divide by 2 .

Theorem 14.11 (continued 1)

Proof (continued). Therefore, the number of possible cycles of length i are

$$
\frac{n(n-1)(n-2) \cdots(n-i+1)}{2 i}=\frac{(n)_{i}}{2 i} \text { where }(n)_{i} \text { denotes } \frac{n!}{(n-i)!} .
$$

Now the probability that all of the necessary i edges are present to form the cycle is p^{i}. Hence, the expected number of cycles of length i is $\frac{(n)_{i}}{2 i} p^{i}$. By the linearity of expectation (see equation (13.4) in Section 13.2. Expectation), the expected number of cycles of length less than k is

$$
E(X)=\sum_{i=3}^{k-1} \frac{(n)_{i}}{2 i} p^{i}<\sum_{i=3}^{k-1} \frac{n^{i}}{1} p^{i}<\sum_{i=0}^{k}(n p)^{i}=\frac{(n p)^{k}-1}{(n p)-1}
$$

since $(n p)^{i}$ forms a geometric sequence with first term 1 (when $i=0$), last term $(n p)^{k}$ (when $i=k$), and ratio ($n p$) (recall that the sum of geometric sequence $a_{1}, a_{2}, \ldots, a_{n}$ with ratio r is $\left.a_{1}\left(1-r^{n}\right) /(1-r)\right)$.

Theorem 14.11 (continued 1)

Proof (continued). Therefore, the number of possible cycles of length i are

$$
\frac{n(n-1)(n-2) \cdots(n-i+1)}{2 i}=\frac{(n)_{i}}{2 i} \text { where }(n)_{i} \text { denotes } \frac{n!}{(n-i)!}
$$

Now the probability that all of the necessary i edges are present to form the cycle is p^{i}. Hence, the expected number of cycles of length i is $\frac{(n)_{i}}{2 i} p^{i}$. By the linearity of expectation (see equation (13.4) in Section 13.2. Expectation), the expected number of cycles of length less than k is

$$
E(X)=\sum_{i=3}^{k-1} \frac{(n)_{i}}{2 i} p^{i}<\sum_{i=3}^{k-1} \frac{n^{i}}{1} p^{i}<\sum_{i=0}^{k}(n p)^{i}=\frac{(n p)^{k}-1}{(n p)-1}
$$

since $(n p)^{i}$ forms a geometric sequence with first term 1 (when $i=0$), last term $(n p)^{k}$ (when $i=k$), and ratio ($n p$) (recall that the sum of geometric sequence $a_{1}, a_{2}, \ldots, a_{n}$ with ratio r is $\left.a_{1}\left(1-r^{n}\right) /(1-r)\right)$.

Theorem 14.11 (continued 2)

Proof (continued). By Markov's Inequality (Proposition 13.4), $P(X>n / 2)<\frac{E(X)}{n / 2}$, so that $P(X>n / 2)<\frac{E(X)}{n / 2}<\frac{2\left((n p)^{k}-1\right)}{n(n p-1)}$. If we take $p=n^{-(k-1) / k}$ so that $n p=n^{1} n^{-(k-1) / k}=n^{1 / k}$ and $(n p)^{k}=\left(n^{1 / k}\right)^{k}=n$ (notice that we are free to choose p to be any value in $[0,1]$; this just defines the probability space), then we have

$$
P(X>n / 2)<\frac{2(n-1)}{n\left(n^{1 / k}-1\right)}=\frac{2(n-1)}{n^{1+1 / k}-n} .
$$

So

$$
\lim _{n \rightarrow \infty} P(X>n / 2) \leq \lim _{n \rightarrow \infty}\left(\frac{2(n-1)}{2^{1+1 / k}-n}\right)=0 .
$$

That is, G almost surely has no more than $n / 2$ cycles of length less that k. So for n sufficiently large, there exists a graph G on v vertices with stability number at most $t=\left\lceil 2 p^{-1} \log n\right\rceil$ and no more than $n / 2$ cycles of length less than k.

Theorem 14.11 (continued 2)

Proof (continued). By Markov's Inequality (Proposition 13.4),
$P(X>n / 2)<\frac{E(X)}{n / 2}$, so that $P(X>n / 2)<\frac{E(X)}{n / 2}<\frac{2\left((n p)^{k}-1\right)}{n(n p-1)}$. If
we take $p=n^{-(k-1) / k}$ so that $n p=n^{1} n^{-(k-1) / k}=n^{1 / k}$ and $(n p)^{k}=\left(n^{1 / k}\right)^{k}=n$ (notice that we are free to choose p to be any value in $[0,1]$; this just defines the probability space), then we have

$$
P(X>n / 2)<\frac{2(n-1)}{n\left(n^{1 / k}-1\right)}=\frac{2(n-1)}{n^{1+1 / k}-n} .
$$

So

$$
\lim _{n \rightarrow \infty} P(X>n / 2) \leq \lim _{n \rightarrow \infty}\left(\frac{2(n-1)}{2^{1+1 / k}-n}\right)=0 .
$$

That is, G almost surely has no more than $n / 2$ cycles of length less that k. So for n sufficiently large, there exists a graph G on v vertices with stability number at most $t=\left\lceil 2 p^{-1} \log n\right\rceil$ and no more than $n / 2$ cycles of length less than k.

Theorem 14.11 (continued 3)

Theorem 14.11. For each positive integer k, there exists a graph with girth at least k and chromatic number at least k.

Proof (continued). We now modify this graph G. We delete one vertex of G from each cycle of length less than k. This means that at most $n / 2$ vertices are deleted, yielding a graph G^{\prime} on at least $n / 2$ vertices with girth at least k. Recall that the stability number of a graph is the size of a largest stable set (or "independent set"). By deleting vertices from graph G, we create graph G^{\prime} with a smaller stability number (deleting a vertex and all edges incident to it can only delete a vertex from some stable set and cannot add any vertices to a stable set of G), so that $\alpha\left(G^{\prime}\right) \leq \alpha(G)$. So $\chi\left(G^{\prime}\right) \leq \chi(G) \leq t$. Since $\chi\left(G^{\prime}\right) \geq v\left(G^{\prime}\right) / \alpha\left(G^{\prime}\right)$ (see equation (14.1) of Section 14.1. Chromatic Number), then $\chi\left(G^{\prime}\right) \geq \frac{v\left(G^{\prime}\right)}{\alpha\left(G^{\prime}\right)} \geq \frac{n / 2}{t}$.

Theorem 14.11 (continued 3)

Theorem 14.11. For each positive integer k, there exists a graph with girth at least k and chromatic number at least k.

Proof (continued). We now modify this graph G. We delete one vertex of G from each cycle of length less than k. This means that at most $n / 2$ vertices are deleted, yielding a graph G^{\prime} on at least $n / 2$ vertices with girth at least k. Recall that the stability number of a graph is the size of a largest stable set (or "independent set"). By deleting vertices from graph G, we create graph G^{\prime} with a smaller stability number (deleting a vertex and all edges incident to it can only delete a vertex from some stable set and cannot add any vertices to a stable set of G), so that $\alpha\left(G^{\prime}\right) \leq \alpha(G)$. So $\chi\left(G^{\prime}\right) \leq \chi(G) \leq t$. Since $\chi\left(G^{\prime}\right) \geq v\left(G^{\prime}\right) / \alpha\left(G^{\prime}\right)$ (see equation (14.1) of Section 14.1. Chromatic Number), then $\chi\left(G^{\prime}\right) \geq \frac{v\left(G^{\prime}\right)}{\alpha\left(G^{\prime}\right)} \geq \frac{n / 2}{t}$.

Theorem 14.11 (continued 4)

Proof (continued). Now

$$
\chi\left(G^{\prime}\right) \geq \frac{n}{2 t}=\frac{n}{2\left\lceil 2 p^{-1} \log n\right\rceil} \geq \frac{n}{2\left(2 p^{-1} \log n+1\right)}
$$

and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left(\frac{n}{2\left(2 p^{-1} \log n+1\right.}\right)}{\left(\frac{n^{1 / k}}{8 \log n}\right)}=\lim _{n \rightarrow \infty} \frac{8 n \log n}{2 n^{1 / k}\left(2 p^{-1} \log n+1\right)} \\
& =\lim _{n \rightarrow \infty} \frac{4 n^{1-1 / k} \log n}{2 p^{-1} \log n+1}=\lim _{n \rightarrow \infty} \frac{4 n^{1-1 / k}}{2 p^{-1}+1 / \log n}=\infty .
\end{aligned}
$$

So $\chi\left(G^{\prime}\right)$ can be made as large as desired by making n sufficiently large (to describe the infinite limit informally). In particular, for any positive integer k, there is a graph G^{\prime} such that $\chi\left(G^{\prime}\right) \geq k$ and the girth of G^{\prime} is at least k, as claimed.

Theorem 14.12

Theorem 14.12. For any positive integer k, there exists a triangle-free k-chromatic graph.

Proof. For $k=1$ and $k=2$, the graphs K_{1} and K_{2} have the required property. We use these as base cases in an induction proof based on the value of k. For the induction step, suppose that a triangle-free graph G_{k} with chromatic number $k \geq 2$ exists. Let the vertices of G_{k} be $v_{1}, v_{2}, \ldots, v_{n}$. Form the graph G_{k+1} from G_{k} as: add $n+1$ new vertices $u_{1}, u_{2}, \ldots, u_{n}, v$, and then for $1 \leq i \leq n$, join u_{i} to the neighbors of v_{i} in G_{k} and also join u_{i} to v. Notice that $u_{1}, u_{2}, \ldots, u_{n}$ is a stable set in G_{k+1}.

Theorem 14.12

Theorem 14.12. For any positive integer k, there exists a triangle-free k-chromatic graph.

Proof. For $k=1$ and $k=2$, the graphs K_{1} and K_{2} have the required property. We use these as base cases in an induction proof based on the value of k. For the induction step, suppose that a triangle-free graph G_{k} with chromatic number $k \geq 2$ exists. Let the vertices of G_{k} be $v_{1}, v_{2}, \ldots, v_{n}$. Form the graph G_{k+1} from G_{k} as: add $n+1$ new vertices $u_{1}, u_{2}, \ldots, u_{n}, v$, and then for $1 \leq i \leq n$, join u_{i} to the neighbors of v_{i} in G_{k} and also join u_{i} to v. Notice that $u_{1}, u_{2}, \ldots, u_{n}$ is a stable set in G_{k+1}.

As an example, if $G_{2}=K_{2}$ with vertices v_{1} and v_{2}, then G_{3} has the new vertices u_{1}, u_{2}, v with u_{1} adjacent to v_{2} and v, and u_{2} adjacent to v_{1} and v to give G_{3} as a 5 -cycle (see Figure 14.6 left, where the labels v_{3}, v_{5}, v_{4} should be replaced with the labels u_{1}, u_{2}, v, respectively).

Theorem 14.12

Theorem 14.12. For any positive integer k, there exists a triangle-free k-chromatic graph.

Proof. For $k=1$ and $k=2$, the graphs K_{1} and K_{2} have the required property. We use these as base cases in an induction proof based on the value of k. For the induction step, suppose that a triangle-free graph G_{k} with chromatic number $k \geq 2$ exists. Let the vertices of G_{k} be $v_{1}, v_{2}, \ldots, v_{n}$. Form the graph G_{k+1} from G_{k} as: add $n+1$ new vertices $u_{1}, u_{2}, \ldots, u_{n}, v$, and then for $1 \leq i \leq n$, join u_{i} to the neighbors of v_{i} in G_{k} and also join u_{i} to v. Notice that $u_{1}, u_{2}, \ldots, u_{n}$ is a stable set in G_{k+1}.

As an example, if $G_{2}=K_{2}$ with vertices v_{1} and v_{2}, then G_{3} has the new vertices u_{1}, u_{2}, v with u_{1} adjacent to v_{2} and v, and u_{2} adjacent to v_{1} and v to give G_{3} as a 5 -cycle (see Figure 14.6 left, where the labels v_{3}, v_{5}, v_{4} should be replaced with the labels u_{1}, u_{2}, v, respectively).

Theorem 14.12 (continued 1)

Proof (continued). Also, for G_{4} we label the vertices of G_{3} as $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and add the new vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, v$ with u_{i} adjacent to the neighbors of v_{i} in G_{3} and also adjacent to v. This gives the graph in Figure 14.6 right.

Fig. 14.6. Mycielski's construction

Theorem 14.12 (continued 2)

Proof (continued). We claim that G_{k+1} is triangle-free. Since $u_{1}, u_{2}, \ldots, u_{n}$ is a stable set in G_{k+1}, then no triangle can contain more than one u_{i} and since v is only adjacent to u_{i} 's then it cannot be in a triangle. If $u_{i} v_{j} v_{k} u_{i}$ were a triangle in G_{k+1} then $v_{i} v_{j} v_{k} v_{i}$ would be a triangle in G_{k} (since u_{i} is adjacent to the neighbors of v_{i}). But this is a triangle in G_{k}, contradicting to the induction hypothesis. So G_{k+1} is triangle-free, as claimed.

We claim G_{k+1} is $(k+1)$-chromatic. First, G_{k+1} is $(k+1)$-colourable because G_{k} is k-colourable by the induction hypothesis and vertex u_{i} can be assigned the same colour as v_{i} (since u_{i} and v_{i} are not adjacent, but the neighbors of v_{i} are also neighbors of u_{i}). Then v can be assigned a new, $(k+1)$-st, colour. Second, ASSUME G_{k+1} is k-colourable. The colouring restricted to the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of G_{k} is a k-colouring of k-chromatic G_{k}. By Exercise 14.1.3(a), for each colour j there is a vertex v_{i} of colour j which is adjacent in G_{k} to vertices of every other colour.

Theorem 14.12 (continued 2)

Proof (continued). We claim that G_{k+1} is triangle-free. Since $u_{1}, u_{2}, \ldots, u_{n}$ is a stable set in G_{k+1}, then no triangle can contain more than one u_{i} and since v is only adjacent to u_{i} 's then it cannot be in a triangle. If $u_{i} v_{j} v_{k} u_{i}$ were a triangle in G_{k+1} then $v_{i} v_{j} v_{k} v_{i}$ would be a triangle in G_{k} (since u_{i} is adjacent to the neighbors of v_{i}). But this is a triangle in G_{k}, contradicting to the induction hypothesis. So G_{k+1} is triangle-free, as claimed.

We claim G_{k+1} is $(k+1)$-chromatic. First, G_{k+1} is $(k+1)$-colourable because G_{k} is k-colourable by the induction hypothesis and vertex u_{i} can be assigned the same colour as v_{i} (since u_{i} and v_{i} are not adjacent, but the neighbors of v_{i} are also neighbors of u_{i}). Then v can be assigned a new, $(k+1)$-st, colour. Second, ASSUME G_{k+1} is k-colourable. The colouring restricted to the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of G_{k} is a k-colouring of k-chromatic G_{k}. By Exercise 14.1.3(a), for each colour j there is a vertex v_{i} of colour j which is adjacent in G_{k} to vertices of every other colour.

Theorem 14.12 (continued 3)

Theorem 14.12. For any positive integer k, there exists a triangle-free k-chromatic graph.

Proof (continued). Since u_{i} has precisely the same neighbors in G_{k+1} which are vertices of G_{k} as v_{i} has in G_{k}, then vertex u_{i} must also have colour j. So each of the k colours appears on at least one of the vertices u_{i}. But vertex v is adjacent to all of the u_{i} and so it cannot be assigned any of the k colours in a proper colouring of G_{k+1}, a CONTRADICTION. So the assumption that G_{k+1} is k-colourable is false. Therefore, G_{k+1} is triangle-free and has chromatic numberk +1 . This establishes the induction step. Therefore, by induction, the claim holds for all $k \in \mathbb{N}$, as needed.

