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Theorem 14.11

Theorem 14.11

Theorem 14.11. For each positive integer k, there exists a graph with
girth at least k and chromatic number at least k.

Proof. Let positive integer k be given. Recall that Gn,p denotes the
probability space of all graphs on n vertices where any two given vertices
of a graph are adjacent wih (fixed) probability p (see Section 13.1.
Random Graphs). Consider G ∈ Gn,p and define t as t = d2p−1 log ne. By
Theorem 13.6, almost surely the stability number α satisfies α(t) ≤ t.

Let
X be the number of cycles of G of length less than k. The expected
number of cycles of length i can be computed by first choosing a first
vertex, a second vertex, . . . , and an ith vertex, which can be done in
n(n − 1)(n − 2) · · · (n − i + 1) ways. Next, we observe that any vertex can
act as the “first” vertex of a cycle, so we must divide by the length of the
cycle, i . Also, the order of the vertices can be reversed and still yield the
same cycle so we also divide by 2.
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Theorem 14.11

Theorem 14.11 (continued 1)

Proof (continued). Therefore, the number of possible cycles of length i
are

n(n − 1)(n − 2) · · · (n − i + 1)

2i
=

(n)i
2i

where (n)i denotes
n!

(n − i)!
.

Now the probability that all of the necessary i edges are present to form

the cycle is pi . Hence, the expected number of cycles of length i is
(n)i
2i

pi .

By the linearity of expectation (see equation (13.4) in Section 13.2.
Expectation), the expected number of cycles of length less than k is

E (X ) =
k−1∑
i=3

(n)i
2i

pi <

k−1∑
i=3

ni

1
pi <

k∑
i=0

(np)i =
(np)k − 1

(np)− 1
,

since (np)i forms a geometric sequence with first term 1 (when i = 0), last
term (np)k (when i = k), and ratio (np) (recall that the sum of geometric
sequence a1, a2, . . . , an with ratio r is a1(1− rn)/(1− r)).

() Graph Theory June 14, 2022 4 / 11

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-13-2.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-13-2.pdf


Theorem 14.11

Theorem 14.11 (continued 1)

Proof (continued). Therefore, the number of possible cycles of length i
are

n(n − 1)(n − 2) · · · (n − i + 1)

2i
=

(n)i
2i

where (n)i denotes
n!

(n − i)!
.

Now the probability that all of the necessary i edges are present to form

the cycle is pi . Hence, the expected number of cycles of length i is
(n)i
2i

pi .

By the linearity of expectation (see equation (13.4) in Section 13.2.
Expectation), the expected number of cycles of length less than k is

E (X ) =
k−1∑
i=3

(n)i
2i

pi <

k−1∑
i=3

ni

1
pi <

k∑
i=0

(np)i =
(np)k − 1

(np)− 1
,

since (np)i forms a geometric sequence with first term 1 (when i = 0), last
term (np)k (when i = k), and ratio (np) (recall that the sum of geometric
sequence a1, a2, . . . , an with ratio r is a1(1− rn)/(1− r)).

() Graph Theory June 14, 2022 4 / 11

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-13-2.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-13-2.pdf


Theorem 14.11

Theorem 14.11 (continued 2)

Proof (continued). By Markov’s Inequality (Proposition 13.4),

P(X > n/2) <
E (X )

n/2
, so that P(X > n/2) <

E (X )

n/2
<

2((np)k − 1)

n(np − 1)
. If

we take p = n−(k−1)/k so that np = n1n−(k−1)/k = n1/k and
(np)k = (n1/k)k = n (notice that we are free to choose p to be any value
in [0, 1]; this just defines the probability space), then we have

P(X > n/2) <
2(n − 1)

n(n1/k − 1)
=

2(n − 1)

n1+1/k − n
.

So

lim
n→∞

P(X > n/2) ≤ lim
n→∞

(
2(n − 1)

21+1/k − n

)
= 0.

That is, G almost surely has no more than n/2 cycles of length less that
k. So for n sufficiently large, there exists a graph G on v vertices with
stability number at most t = d2p−1 log ne and no more than n/2 cycles of
length less than k.
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Theorem 14.11

Theorem 14.11 (continued 3)

Theorem 14.11. For each positive integer k, there exists a graph with
girth at least k and chromatic number at least k.

Proof (continued). We now modify this graph G . We delete one vertex
of G from each cycle of length less than k. This means that at most n/2
vertices are deleted, yielding a graph G ′ on at least n/2 vertices with girth
at least k. Recall that the stability number of a graph is the size of a
largest stable set (or “independent set”). By deleting vertices from graph
G , we create graph G ′ with a smaller stability number (deleting a vertex
and all edges incident to it can only delete a vertex from some stable set
and cannot add any vertices to a stable set of G ), so that α(G ′) ≤ α(G ).
So χ(G ′) ≤ χ(G ) ≤ t. Since χ(G ′) ≥ v(G ′)/α(G ′) (see equation (14.1)

of Section 14.1. Chromatic Number), then χ(G ′) ≥ v(G ′)

α(G ′)
≥ n/2

t
.

() Graph Theory June 14, 2022 6 / 11

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-14-1.pdf


Theorem 14.11

Theorem 14.11 (continued 3)

Theorem 14.11. For each positive integer k, there exists a graph with
girth at least k and chromatic number at least k.

Proof (continued). We now modify this graph G . We delete one vertex
of G from each cycle of length less than k. This means that at most n/2
vertices are deleted, yielding a graph G ′ on at least n/2 vertices with girth
at least k. Recall that the stability number of a graph is the size of a
largest stable set (or “independent set”). By deleting vertices from graph
G , we create graph G ′ with a smaller stability number (deleting a vertex
and all edges incident to it can only delete a vertex from some stable set
and cannot add any vertices to a stable set of G ), so that α(G ′) ≤ α(G ).
So χ(G ′) ≤ χ(G ) ≤ t. Since χ(G ′) ≥ v(G ′)/α(G ′) (see equation (14.1)

of Section 14.1. Chromatic Number), then χ(G ′) ≥ v(G ′)

α(G ′)
≥ n/2

t
.

() Graph Theory June 14, 2022 6 / 11

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-14-1.pdf


Theorem 14.11

Theorem 14.11 (continued 4)

Proof (continued). Now

χ(G ′) ≥ n

2t
=

n

2d2p−1 log ne
≥ n

2(2p−1 log n + 1)

and

lim
n→∞

(
n

2(2p−1 log n+1

)
(

n1/k

8 log n

) = lim
n→∞

8n log n

2n1/k(2p−1 log n + 1)

= lim
n→∞

4n1−1/k log n

2p−1 log n + 1
= lim

n→∞

4n1−1/k

2p−1 + 1/ log n
= ∞.

So χ(G ′) can be made as large as desired by making n sufficiently large
(to describe the infinite limit informally). In particular, for any positive
integer k, there is a graph G ′ such that χ(G ′) ≥ k and the girth of G ′ is
at least k, as claimed.
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Theorem 14.12

Theorem 14.12

Theorem 14.12. For any positive integer k, there exists a triangle-free
k-chromatic graph.

Proof. For k = 1 and k = 2, the graphs K1 and K2 have the required
property. We use these as base cases in an induction proof based on the
value of k. For the induction step, suppose that a triangle-free graph Gk

with chromatic number k ≥ 2 exists. Let the vertices of Gk be
v1, v2, . . . , vn. Form the graph Gk+1 from Gk as: add n + 1 new vertices
u1, u2, . . . , un, v , and then for 1 ≤ i ≤ n, join ui to the neighbors of vi in
Gk and also join ui to v . Notice that u1, u2, . . . , un is a stable set in Gk+1.

As an example, if G2 = K2 with vertices v1 and v2, then G3 has the new
vertices u1, u2, v with u1 adjacent to v2 and v , and u2 adjacent to v1 and
v to give G3 as a 5-cycle (see Figure 14.6 left, where the labels v3, v5, v4

should be replaced with the labels u1, u2, v , respectively).
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Theorem 14.12

Theorem 14.12 (continued 1)

Proof (continued). Also, for G4 we label the vertices of G3 as
v1, v2, v3, v4, v5 and add the new vertices u1, u2, u3, u4, u5, v with ui

adjacent to the neighbors of vi in G3 and also adjacent to v . This gives
the graph in Figure 14.6 right.
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Theorem 14.12

Theorem 14.12 (continued 2)

Proof (continued). We claim that Gk+1 is triangle-free. Since
u1, u2, . . . , un is a stable set in Gk+1, then no triangle can contain more
than one ui and since v is only adjacent to ui ’s then it cannot be in a
triangle. If uivjvkui were a triangle in Gk+1 then vivjvkvi would be a
triangle in Gk (since ui is adjacent to the neighbors of vi ). But this is a
triangle in Gk , contradicting to the induction hypothesis. So Gk+1 is
triangle-free, as claimed.

We claim Gk+1 is (k + 1)-chromatic. First, Gk+1 is (k + 1)-colourable
because Gk is k-colourable by the induction hypothesis and vertex ui can
be assigned the same colour as vi (since ui and vi are not adjacent, but the
neighbors of vi are also neighbors of ui ). Then v can be assigned a new,
(k + 1)-st, colour. Second, ASSUME Gk+1 is k-colourable. The colouring
restricted to the vertices {v1, v2, . . . , vn} of Gk is a k-colouring of
k-chromatic Gk . By Exercise 14.1.3(a), for each colour j there is a vertex
vi of colour j which is adjacent in Gk to vertices of every other colour.
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Theorem 14.12

Theorem 14.12 (continued 3)

Theorem 14.12. For any positive integer k, there exists a triangle-free
k-chromatic graph.

Proof (continued). Since ui has precisely the same neighbors in Gk+1

which are vertices of Gk as vi has in Gk , then vertex ui must also have
colour j . So each of the k colours appears on at least one of the vertices
ui . But vertex v is adjacent to all of the ui and so it cannot be assigned
any of the k colours in a proper colouring of Gk+1, a CONTRADICTION.
So the assumption that Gk+1 is k-colourable is false. Therefore, Gk+1 is
triangle-free and has chromatic numberk + 1. This establishes the
induction step. Therefore, by induction, the claim holds for all k ∈ N, as
needed.
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