Graph Theory ### **Chapter 14. Vertex Colourings** 14.4. Perfect Graphs—Proofs of Theorems Graph Theory June 17, 2022 ## Lemma 14.16 **Lemma 14.16.** Let G be a minimally imperfect graph with stability number α and clique number ω . Then G contains $\alpha\omega+1$ stable sets $S_0, S_1, \ldots, S_{\alpha\omega}$ and $\alpha\omega + 1$ cliques $C_0, C_1, \ldots, C_{\alpha\omega}$ such that: - each vertex of G belongs to precisely α of the stable sets S_i . - each clique C_i has ω vertices, - $C_i \cap S_i = \emptyset$ for $0 < i < \alpha \omega$, and - $|C_i \cap S_j| = 1$ for $0 \le i < j \le \alpha \omega$. **Proof.** Let S_0 be a stable set of α vertices of G, and let $v \in S_0$ (of course $|S_0| \ge 1$). The graph G - v is perfect because G is minimally imperfect (note that G - v is the subgraph of G induced by $V(G) \setminus \{v\}$). So by the definition of "perfect graph" and Note 14.1.B. $\chi(G-V)=\omega(G-V)\leq\omega(G)$. Since the colours classes of a proper colouring are each stable sets, we then have for any $v \in S_0$ that the set $V \setminus \{v\}$ can be partitioned into a family S_v of ω stable sets (the inequality tells us that there are at most ω stable sets, but the stable sets can be further subdivided to get a total of ω stable sets). ## Proposition 14.15 **Proposition 14.15.** Let S be a stable set in a minimally imperfect graph G. Then $\omega(G - S) = \omega(G)$. **Proof.** This is easy with the use of Exercise 14.4.5, which states that for S a stable set in a minimally imperfect graph G we have $$\omega(G-S) \leq \omega(G) \leq \chi(G)-1 \leq \chi(G-S)=\omega(G-S).$$ Since the left and right terms are the same, then the inequalities reduce to equalities. > June 17, 2022 Graph Theory # Lemma 14.16 (continued 1) **Proof (continued).** Since $|S_0| = \alpha$ then there are α such v in S_0 , since each family S_{ν} contains ω stable sets, then there are $\alpha\omega$ stable sets in the totality of the families $S_1, S_2, \dots, S_{\alpha}$. Denote these stable sets as $S_1, S_2, \ldots, S_{\alpha\omega}$. We'll see below that each S_i is nonempty when we establish the fourth claim. For each v a vertex of G where $v \in S_0$, we have that $v \in S_i$ for some unique S_i in family S_w where $w \neq v$. So this vis in S_0 and all but one of $S_1, S_2, \ldots, S_{\alpha}$; that is, ν is in α of the stable sets S_i . For each v a vertex of G where $v \notin S_0$, we have that v is in some unique S_i in family S_i for each $1 \le i \le \alpha$; that is, ν is in α of the stable sets S_i . Therefore the first claim holds. By Proposition 14.15, the clique numbers satisfy $\omega(G - S_i) = \omega(G)$ for each $0 \le i \le \alpha \omega$. Therefore there is a maximum clique C_i of $G - S_i$ that is also a maximum clique of G. Each C_i has $\omega = \omega(G)$ vertices, so the second claim holds. So there is a maximum clique C_i of G that is disjoint from S_i and the third claim holds. # Lemma 14.16 (continued 2) **Lemma 14.16.** Let G be a minimally imperfect graph with stability number α and clique number ω . Then G contains $\alpha\omega+1$ stable sets $S_0, S_1, \ldots, S_{\alpha\omega}$ and $\alpha\omega+1$ cliques $C_0, C_1, \ldots, C_{\alpha\omega}$ such that: - each vertex of G belongs to precisely α of the stable sets S_i , - each clique C_i has ω vertices, - $C_i \cap S_i = \emptyset$ for $0 \le i \le \alpha \omega$, and - $|C_i \cap S_j| = 1$ for $0 \le i < j \le \alpha \omega$. **Proof (continued).** Because each of the ω vertices of C_i lie in α of the stable sets (by the first claim), there are $\alpha\omega+1$ stable sets (but $C_i\cap S_i=\varnothing$ for $0\le i\le \alpha\omega$ by the third claim), and no two vertices of clique C_i can belong to a common stable set (since vertices of a clique are adjacent and vertices of a stable set are not adjacent), then each C_i shares exactly one point with each S_j where $i\ne j$. That is, $|C_i\cap S_j|=1$ for $0\le i< j\le \alpha\omega$, and the fourth claim holds. Graph Theory ## Theorem 14.14 (continued 1) **Proof (continued).** Consider the stable sets S_i for $0 < i < \alpha \omega$ and the cliques C_i for $0 < i < \alpha \omega$ as given for a minimally imperfect graph in Lemma 14.16. Let **S** and **C** be the $n \times (\alpha \omega + 1)$ incidence matrices of the families. Now the transpose of **S**, \mathbf{S}^t , is $(\alpha\omega+1)\times n$ and so the product **S**^t**C** exists and is $(\alpha\omega + 1) \times (\alpha\omega + 1)$. Now the *i*th row of **S**^t consists of 0's and 1's, where the kth entry is 1 if $k \in S_i$ and 0 if $k \notin S_i$. The ith column of **C** consists of 0's and 1's where the kth entry is 1 if $k \in C_i$ and 0 if $k \notin C_i$. The (i, j)-entry of **S**^t**C** is the inner product (or "dot product") of the *i*th row of S^t and the *j*th column of C. By the third claim of Lemma 14.16 we have $C_i \cap S_i = \emptyset$ for $0 < i < \alpha \omega$, so in the *i*th row of \mathbf{S}^t and the ith column of \mathbf{C} , if the kth entry of one of these is 1 then the kth entry of the other is 0. So the inner product is 0 and the (i, i)-entry of **S**^t**C** is 0. By the fourth claim of Lemma 14.16 we have $|C_i \cap S_i| = 1$ for $0 \le i < j \le \alpha \omega$, so in the *i*th row of **S**^t and the *j*th column of **C** the k entry of both is 1 only once. So the inner product is 1 and the (i, j)-entry of **S**^t**C** is 1 for $i \neq j$. ## Theorem 14.14 **Theorem 14.14.** A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H)\omega(H)$. **Proof.** Suppose that G is a perfect graph so that $\chi(H)=\omega(H)$ for all induced subgraphs H of G. Let H be any (fixed) induced subgraph of G. Then H is $\omega(H)$ -colurable (since $\chi(H)=\omega(H)$). Since a colour class is an independent set and the largest independent set is of size α , then the number of vertices satisfies $v(H) \leq \alpha(H)\chi(H) = \alpha(H)\omega(H)$. So if G is perfect, then for every induced subgraph H of G we have $v(H) \leq \alpha(H)\omega(H)$. We now prove the converse (actually, the contrapositive of the converse). Suppose G is not perfect. We want to show that $v(G) \geq \alpha(G)\omega(G) + 1$. If we can show this for minimally imperfect graphs, then it will hold for all imperfect graphs. So without loss of generality, suppose G is minimally imperfect. Graph Theory ______ # Theorem 14.14 (continued 2) **Proof (continued).** Therefore, $\mathbf{S}^t\mathbf{C} = \mathbf{J} - \mathbf{I}$ where \mathbf{J} is the $(\alpha\omega+1)\times(\alpha\omega+1)$ matrix of all 1's and \mathbf{I} is the $(\alpha\omega+1)\times(\alpha\omega+1)$ identity matrix. Now $\mathbf{J}-\mathbf{I}$ is nonsingular (i.e., invertible) because the inverse is $(1/(\alpha\omega))\mathbf{J}-\mathbf{I}$ because $$(\mathbf{J} - \mathbf{I}) \left(\frac{1}{\alpha \omega} \mathbf{J} - \mathbf{I} \right) = \frac{1}{\alpha \omega} \mathbf{J}^2 - \mathbf{J} - \frac{1}{\alpha \omega} \mathbf{J} + \mathbf{I}^2 = \frac{1}{\alpha \omega} \mathbf{J}^2 - \left(1 + \frac{1}{\alpha \omega} \right) \mathbf{J} + \mathbf{I}$$ $$= \frac{1}{\alpha \omega} ((\alpha \omega + 1) \mathbf{J}) - \left(\frac{\alpha \omega + 1}{\alpha \omega} \right) \mathbf{J} + \mathbf{I} = \frac{\alpha \omega + 1}{\alpha \omega} \mathbf{J} - \frac{\alpha \omega + 1}{\alpha \omega} \mathbf{J} + \mathbf{I} = \mathbf{I}.$$ This shows that $(1/(\alpha\omega))\mathbf{J} - \mathbf{I}$ is a right inverse of $\mathbf{J} - \mathbf{I}$, but since \mathbf{I} and \mathbf{J} commute, this is sufficient to establish that we have a two-sided inverse (see also "Theorem 1.11. A Commutative Property" in my Linear Algebra [MATH 2010] online notes on Section 1.5. Inverses of Matrices, and Linear Systems). Since $\mathbf{J} - \mathbf{I}$ is invertible, then it must be a full-rank $\alpha\omega + 1$ (see "Theorem 2.6. An Invertible Criteria" in my Linear Algebra online notes on Section 2.2. The Rank of a Matrix). June 17, 2022 7 / 11 June 17, 2022 6 / 11 # Theorem 14.14 (continued 3) **Theorem 14.14.** A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H)\omega(H)$. **Proof (continued).** Recall that the rank of a matrix in the (common) dimension of the row space and the column space. In general, $\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$ (see Exercises 2.2.18 and 2.2.20 in J. Fraleigh and R. Beauregard's *Linear Algebra*, 3rd Edition, Addison-Wesley (1994), or see Theorem 3.3.5 in my online notes for Theory of Matrices [MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix) so $$\alpha\omega + 1 = \operatorname{rank}(\mathbf{J} - \mathbf{I}) = \operatorname{rank}(\mathbf{S}^t\mathbf{C}) \le \min\{\operatorname{rank}(\mathbf{S}^t), \operatorname{rank}(\mathbf{C})\}.$$ Now the row rank equals the column rank for any matrix (see "Theorem 2.4. Row Rank Equals Column Rank" in my Linear Algebra notes on Section 2.2. The Rank of a Matrix), so we have $\mathrm{rank}(\mathbf{S}) = \alpha \omega + 1$ and $\mathrm{rank}(\mathbf{C}) = \alpha \omega + 1$ since the rank can't be greater than the number of rows or the number of columns. Graph Theory Theorem 14.14 (continued 4) **Theorem 14.14.** A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H)\omega(H)$. #### Proof (continued). Both **S** and **C** have n row, so the number of rows must be at least as big as the rank, hence $n \geq \alpha \omega + 1$. That is, for minimally imperfect graph G, $v(G) \geq \alpha(G)\omega(G) + 1$. As explained above, the general claim now holds. () Graph Theory June 17, 2022 11 / 11