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Lemma 14.16

Lemma 14.16

Lemma 14.16. Let G be a minimally imperfect graph with stability
number a and clique number w. Then G contains aw + 1 stable sets
S0,51,...,S4 and aw + 1 cliques Cy, (4, ..., Cy, such that:

e each vertex of G belongs to precisely « of the stable sets S;,

e each clique C; has w vertices,

e (NS =wfor0<i<aw, and

e IGiNSj|=1for0<i<j<aw.
Proof. Let Sy be a stable set of « vertices of G, and let v € Sy (of course
|So| > 1). The graph G — v is perfect because G is minimally imperfect
(note that G — v is the subgraph of G induced by V(G)\ {v}). So by the
definition of “perfect graph” and Note 14.1.B,
X(G — v) =w(G — v) < w(G). Since the colours classes of a proper
colouring are each stable sets, we then have for any v € Sy that the set
V' \ {v} can be partitioned into a family S, of w stable sets (the inequality
tells us that there are at most w stable sets, but the stable sets can be
further subdivided to get a total of w stable sets).

June 17, 2022 4/11

Graph Theory

Proposition 14.15

Proposition 14.15

Proposition 14.15. Let S be a stable set in a minimally imperfect graph
G. Then w(G — S) = w(G).

Proof. This is easy with the use of Exercise 14.4.5, which states that for
S a stable set in a minimally imperfect graph G we have

w(G—5) <w(6) < x(G) - 1< x(G—95)=w(G-S).

Since the left and right terms are the same, then the inequalities reduce to
equalities. O
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Lemma 14.16 (continued 1)

Proof (continued). Since |So| = « then there are a such v in Sp, since
each family S, contains w stable sets, then there are aw stable sets in the
totality of the families S1,S,, ..., S,. Denote these stable sets as

51,5, ..., Sqw. We'll see below that each S; is nonempty when we
establish the fourth claim. For each v a vertex of G where v € §g, we
have that v € S; for some unique S; in family S, where w # v. So this v
is in Sy and all but one of 81, S,,...,8,; that is, v is in « of the stable
sets S;. For each v a vertex of G where v &€ Sy, we have that v is in some
unique S; in family S; for each 1 < j < a; that is, v is in « of the stable
sets S;. Therefore the first claim holds.

By Proposition 14.15, the clique numbers satisfy w(G — S;) = w(G) for
each 0 < i < aw. Therefore there is a maximum clique C; of G — S; that
is also a maximum clique of G. Each C; has w = w(G) vertices, so the
second claim holds. So there is a maximum clique C; of G that is disjoint
from S; and the third claim holds.
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Lemma 14.16 (continued 2)

Lemma 14.16. Let G be a minimally imperfect graph with stability
number a and clique number w. Then G contains aw + 1 stable sets
So,51,...,S4 and aw + 1 cliques Cy, (4, ..., Cy, such that:

e each vertex of G belongs to precisely « of the stable sets S;,
e each clique C; has w vertices,

e (NS = for0<i<aw, and

e [GiNSj|=1for0<i<j<aw.

Proof (continued). Because each of the w vertices of C; lie in « of the
stable sets (by the first claim), there are aw + 1 stable sets (but

CGiNS; =@ for 0 < i< aw by the third claim), and no two vertices of
clique C; can belong to a common stable set (since vertices of a clique are
adjacent and vertices of a stable set are not adjacent), then each C; shares
exactly one point with each S; where i # j. That is, |GG N Sj| =1 for

0 < i< j < aw, and the fourth claim holds. ]
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Theorem 14.14 (continued 1)

Proof (continued). Consider the stable sets S; for 0 < i < aw and the
cliques C; for 0 < i < aw as given for a minimally imperfect graph in
Lemma 14.16. Let S and C be the n x (aw + 1) incidence matrices of the
families. Now the transpose of S, S, is (aw + 1) X n and so the product
StC exists and is (aw + 1) x (aw + 1). Now the ith row of St consists of
0's and 1's, where the kth entry is 1 if k € S; and 0 if k € S;. The jth
column of C consists of 0's and 1's where the kth entry is 1 if k € C; and
0if k & C;. The (i, j)-entry of S'C is the inner product (or “dot product”)
of the ith row of S* and the jth column of C. By the third claim of
Lemma 14.16 we have G;N'S; = @ for 0 < i/ < aw, so in the ith row of St
and the ith column of C, if the kth entry of one of these is 1 then the kth
entry of the other is 0. So the inner product is 0 and the (i, /)-entry of
S'C is 0. By the fourth claim of Lemma 14.16 we have |C; N Sj| =1 for
0<i<j<aw, sointhe ith row of St and the jth column of C the k
entry of both is 1 only once. So the inner product is 1 and the (i, j)-entry
of StCis 1 for i # j.
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Theorem 14.14

Theorem 14.14. A graph G is perfect if and only if every induced
subgraph H of G satisfies the inequality v(H) < a(H)w(H).

Proof. Suppose that G is a perfect graph so that x(H) = w(H) for all
induced subgraphs H of G. Let H be any (fixed) induced subgraph of G.
Then H is w(H)-colurable (since x(H) = w(H)). Since a colour class is an
independent set and the largest independent set is of size «, then the
number of vertices satisfies v(H) < a(H)x(H) = a(H)w(H). So if G is
perfect, then for every induced subgraph H of G we have

v(H) < a(H)w(H).

We now prove the converse (actually, the contrapositive of the converse).
Suppose G is not perfect. We want to show that v(G) > a(G)w(G) + 1.
If we can show this for minimally imperfect graphs, then it will hold for all
imperfect graphs. So without loss of generality, suppose G is minimally
imperfect.
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Theorem 14.14 (continued 2)

Proof (continued). Therefore, S'C = J — | where J is the

(aw + 1) x (aw + 1) matrix of all I's and | is the (aw + 1) X (aw + 1)
identity matrix. Now J — I is nonsingular (i.e., invertible) because the
inverse is (1/(aw))J — | because

1 1 1 1 1
(J—l)(—J—l> =—J2—J——J+I2:—J2—<1+—)J+|
ow ow ow oaw oaw
:i((aw+1)J)—<aw+1>J—|—l aw+1 aw+1

aw aw

= J - J+1=1
aw ow
This shows that (1/(aw))d — | is a right inverse of J — I, but since | and J
commute, this is sufficient to establish that we have a two-sided inverse
(see also “Theorem 1.11. A Commutative Property” in my Linear Algebra
[MATH 2010] online notes on Section 1.5. Inverses of Matrices, and Linear
Systems). Since J — | is invertible, then it must be a full-rank aw + 1 (see
“Theorem 2.6. An Invertible Criteria” in my Linear Algebra online notes on
Section 2.2. The Rank of a Matrix).
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Theorem 14.14 (continued 3)

Theorem 14.14. A graph G is perfect if and only if every induced
subgraph H of G satisfies the inequality v(H) < a(H)w(H).

Proof (continued). Recall that the rank of a matrix in the (common)
dimension of the row space and the column space. In general,

rank(AB) < min{rank(A), rank(B)} (see Exercises 2.2.18 and 2.2.20 in J.
Fraleigh and R. Beauregard's Linear Algebra, 3rd Edition, Addison-Wesley
(1994), or see Theorem 3.3.5 in my online notes for Theory of Matrices
[MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank
Matrix) so

aw + 1 = rank(J — 1) = rank(S*C) < min{rank(S"), rank(C)}.

Now the row rank equals the column rank for any matrix (see “Theorem
2.4. Row Rank Equals Column Rank” in my Linear Algebra notes on
Section 2.2. The Rank of a Matrix), so we have rank(S) = aw + 1 and
rank(C) = aw + 1 since the rank can't be greater than the number of rows

or the number of columns.
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Theorem 14.14 (continued 4)

Theorem 14.14. A graph G is perfect if and only if every induced
subgraph H of G satisfies the inequality v(H) < a(H)w(H).

Proof (continued).

Both S and C have n row, so the number of rows must be at least as big

as the rank, hence n > aw + 1. That is, for minimally imperfect graph G,
v(G) > a(G)w(G) + 1. As explained above, the general claim now

holds. O
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