Graph Theory

Chapter 14. Vertex Colourings

14.4. Perfect Graphs—Proofs of Theorems

Table of contents

(1) Proposition 14.15
(2) Lemma 14.16
(3) Theorem 14.14

Proposition 14.15

Proposition 14.15. Let S be a stable set in a minimally imperfect graph G. Then $\omega(G-S)=\omega(G)$.

Proof. This is easy with the use of Exercise 14.4.5, which states that for S a stable set in a minimally imperfect graph G we have

$$
\omega(G-S) \leq \omega(G) \leq \chi(G)-1 \leq \chi(G-S)=\omega(G-S)
$$

Since the left and right terms are the same, then the inequalities reduce to equalities.

Proposition 14.15

Proposition 14.15. Let S be a stable set in a minimally imperfect graph G. Then $\omega(G-S)=\omega(G)$.

Proof. This is easy with the use of Exercise 14.4.5, which states that for S a stable set in a minimally imperfect graph G we have

$$
\omega(G-S) \leq \omega(G) \leq \chi(G)-1 \leq \chi(G-S)=\omega(G-S)
$$

Since the left and right terms are the same, then the inequalities reduce to equalities.

Lemma 14.16

Lemma 14.16. Let G be a minimally imperfect graph with stability number α and clique number ω. Then G contains $\alpha \omega+1$ stable sets $S_{0}, S_{1}, \ldots, S_{\alpha \omega}$ and $\alpha \omega+1$ cliques $C_{0}, C_{1}, \ldots, C_{\alpha \omega}$ such that:

- each vertex of G belongs to precisely α of the stable sets S_{i},
- each clique C_{i} has ω vertices,
- $C_{i} \cap S_{i}=\varnothing$ for $0 \leq i \leq \alpha \omega$, and
- $\left|C_{i} \cap S_{j}\right|=1$ for $0 \leq i<j \leq \alpha \omega$.

Proof. Let S_{0} be a stable set of α vertices of G, and let $v \in S_{0}$ (of course $\left|S_{0}\right| \geq 1$). The graph $G-v$ is perfect because G is minimally imperfect (note that $G-v$ is the subgraph of G induced by $V(G) \backslash\{v\}$). So by the definition of "perfect graph" and Note 14.1.B, $\chi(G-v)=\omega(G-v) \leq \omega(G)$.

Lemma 14.16

Lemma 14.16. Let G be a minimally imperfect graph with stability number α and clique number ω. Then G contains $\alpha \omega+1$ stable sets $S_{0}, S_{1}, \ldots, S_{\alpha \omega}$ and $\alpha \omega+1$ cliques $C_{0}, C_{1}, \ldots, C_{\alpha \omega}$ such that:

- each vertex of G belongs to precisely α of the stable sets S_{i},
- each clique C_{i} has ω vertices,
- $C_{i} \cap S_{i}=\varnothing$ for $0 \leq i \leq \alpha \omega$, and
- $\left|C_{i} \cap S_{j}\right|=1$ for $0 \leq i<j \leq \alpha \omega$.

Proof. Let S_{0} be a stable set of α vertices of G, and let $v \in S_{0}$ (of course $\left|S_{0}\right| \geq 1$). The graph $G-v$ is perfect because G is minimally imperfect (note that $G-v$ is the subgraph of G induced by $V(G) \backslash\{v\}$). So by the definition of "perfect graph" and Note 14.1.B, $\chi(G-v)=\omega(G-v) \leq \omega(G)$. Since the colours classes of a proper colouring are each stable sets, we then have for any $v \in S_{0}$ that the set $V \backslash\{v\}$ can be partitioned into a family \mathcal{S}_{v} of ω stable sets (the inequality tells us that there are at most ω stable sets, but the stable sets can be further subdivided to get a total of ω stable sets)

Lemma 14.16

Lemma 14.16. Let G be a minimally imperfect graph with stability number α and clique number ω. Then G contains $\alpha \omega+1$ stable sets $S_{0}, S_{1}, \ldots, S_{\alpha \omega}$ and $\alpha \omega+1$ cliques $C_{0}, C_{1}, \ldots, C_{\alpha \omega}$ such that:

- each vertex of G belongs to precisely α of the stable sets S_{i},
- each clique C_{i} has ω vertices,
- $C_{i} \cap S_{i}=\varnothing$ for $0 \leq i \leq \alpha \omega$, and
- $\left|C_{i} \cap S_{j}\right|=1$ for $0 \leq i<j \leq \alpha \omega$.

Proof. Let S_{0} be a stable set of α vertices of G, and let $v \in S_{0}$ (of course $\left|S_{0}\right| \geq 1$). The graph $G-v$ is perfect because G is minimally imperfect (note that $G-v$ is the subgraph of G induced by $V(G) \backslash\{v\}$). So by the definition of "perfect graph" and Note 14.1.B, $\chi(G-v)=\omega(G-v) \leq \omega(G)$. Since the colours classes of a proper colouring are each stable sets, we then have for any $v \in S_{0}$ that the set $V \backslash\{v\}$ can be partitioned into a family \mathcal{S}_{v} of ω stable sets (the inequality tells us that there are at most ω stable sets, but the stable sets can be further subdivided to get a total of ω stable sets).

Lemma 14.16 (continued 1)

Proof (continued). Since $\left|S_{0}\right|=\alpha$ then there are α such v in S_{0}, since each family \mathcal{S}_{v} contains ω stable sets, then there are $\alpha \omega$ stable sets in the totality of the families $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{\alpha}$. Denote these stable sets as $S_{1}, S_{2}, \ldots, S_{\alpha \omega}$. We'll see below that each S_{j} is nonempty when we establish the fourth claim. For each v a vertex of G where $v \in S_{0}$, we have that $v \in S_{i}$ for some unique S_{i} in family \mathcal{S}_{w} where $w \neq v$. So this v is in S_{0} and all but one of $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{\alpha}$; that is, v is in α of the stable sets S_{i}. For each v a vertex of G where $v \notin S_{0}$, we have that v is in some unique S_{i} in family \mathcal{S}_{j} for each $1 \leq j \leq \alpha$; that is, v is in α of the stable sets S_{i}. Therefore the first claim holds.

Lemma 14.16 (continued 1)

Proof (continued). Since $\left|S_{0}\right|=\alpha$ then there are α such v in S_{0}, since each family \mathcal{S}_{v} contains ω stable sets, then there are $\alpha \omega$ stable sets in the totality of the families $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{\alpha}$. Denote these stable sets as $S_{1}, S_{2}, \ldots, S_{\alpha \omega}$. We'll see below that each S_{j} is nonempty when we establish the fourth claim. For each v a vertex of G where $v \in S_{0}$, we have that $v \in S_{i}$ for some unique S_{i} in family \mathcal{S}_{w} where $w \neq v$. So this v is in S_{0} and all but one of $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{\alpha}$; that is, v is in α of the stable sets S_{i}. For each v a vertex of G where $v \notin S_{0}$, we have that v is in some unique S_{i} in family \mathcal{S}_{j} for each $1 \leq j \leq \alpha$; that is, v is in α of the stable sets S_{i}. Therefore the first claim holds.

By Proposition 14.15, the clique numbers satisfy $\omega\left(G-S_{i}\right)=\omega(G)$ for each $0 \leq i \leq \alpha \omega$. Therefore there is a maximum clique C_{i} of $G-S_{i}$ that is also a maximum clique of G. Each C_{i} has $\omega=\omega(G)$ vertices, so the second claim holds. So there is a maximum clique C_{i} of G that is disjoint from S_{i} and the third claim holds.

Lemma 14.16 (continued 1)

Proof (continued). Since $\left|S_{0}\right|=\alpha$ then there are α such v in S_{0}, since each family \mathcal{S}_{v} contains ω stable sets, then there are $\alpha \omega$ stable sets in the totality of the families $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{\alpha}$. Denote these stable sets as $S_{1}, S_{2}, \ldots, S_{\alpha \omega}$. We'll see below that each S_{j} is nonempty when we establish the fourth claim. For each v a vertex of G where $v \in S_{0}$, we have that $v \in S_{i}$ for some unique S_{i} in family \mathcal{S}_{w} where $w \neq v$. So this v is in S_{0} and all but one of $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{\alpha}$; that is, v is in α of the stable sets S_{i}. For each v a vertex of G where $v \notin S_{0}$, we have that v is in some unique S_{i} in family \mathcal{S}_{j} for each $1 \leq j \leq \alpha$; that is, v is in α of the stable sets S_{i}. Therefore the first claim holds.

By Proposition 14.15, the clique numbers satisfy $\omega\left(G-S_{i}\right)=\omega(G)$ for each $0 \leq i \leq \alpha \omega$. Therefore there is a maximum clique C_{i} of $G-S_{i}$ that is also a maximum clique of G. Each C_{i} has $\omega=\omega(G)$ vertices, so the second claim holds. So there is a maximum clique C_{i} of G that is disjoint from S_{i} and the third claim holds.

Lemma 14.16 (continued 2)

Lemma 14.16. Let G be a minimally imperfect graph with stability number α and clique number ω. Then G contains $\alpha \omega+1$ stable sets $S_{0}, S_{1}, \ldots, S_{\alpha \omega}$ and $\alpha \omega+1$ cliques $C_{0}, C_{1}, \ldots, C_{\alpha \omega}$ such that:

- each vertex of G belongs to precisely α of the stable sets S_{i},
- each clique C_{i} has ω vertices,
- $C_{i} \cap S_{i}=\varnothing$ for $0 \leq i \leq \alpha \omega$, and
- $\left|C_{i} \cap S_{j}\right|=1$ for $0 \leq i<j \leq \alpha \omega$.

Proof (continued). Because each of the ω vertices of C_{i} lie in α of the stable sets (by the first claim), there are $\alpha \omega+1$ stable sets (but $C_{i} \cap S_{i}=\varnothing$ for $0 \leq i \leq \alpha \omega$ by the third claim), and no two vertices of clique C_{i} can belong to a common stable set (since vertices of a clique are adjacent and vertices of a stable set are not adjacent), then each C_{i} shares exactly one point with each S_{j} where $i \neq j$. That is, $\left|C_{i} \cap S_{j}\right|=1$ for $0 \leq i<j \leq \alpha \omega$, and the fourth claim holds.

Theorem 14.14

Theorem 14.14. A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H) \omega(H)$.

Proof. Suppose that G is a perfect graph so that $\chi(H)=\omega(H)$ for all induced subgraphs H of G. Let H be any (fixed) induced subgraph of G. Then H is $\omega(H)$-colurable (since $\chi(H)=\omega(H)$). Since a colour class is an independent set and the largest independent set is of size α, then the number of vertices satisfies $v(H) \leq \alpha(H) \chi(H)=\alpha(H) \omega(H)$. So if G is perfect, then for every induced subgraph H of G we have $v(H) \leq \alpha(H) \omega(H)$.

Theorem 14.14

Theorem 14.14. A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H) \omega(H)$.

Proof. Suppose that G is a perfect graph so that $\chi(H)=\omega(H)$ for all induced subgraphs H of G. Let H be any (fixed) induced subgraph of G. Then H is $\omega(H)$-colurable (since $\chi(H)=\omega(H)$). Since a colour class is an independent set and the largest independent set is of size α, then the number of vertices satisfies $v(H) \leq \alpha(H) \chi(H)=\alpha(H) \omega(H)$. So if G is perfect, then for every induced subgraph H of G we have $v(H) \leq \alpha(H) \omega(H)$.

We now prove the converse (actually, the contrapositive of the converse) Suppose G is not perfect. We want to show that $v(G) \geq \alpha(G) \omega(G)+1$. If we can show this for minimally imperfect graphs, then it will hold for all imperfect graphs. So without loss of generality, suppose G is minimally imperfect.

Theorem 14.14

Theorem 14.14. A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H) \omega(H)$.

Proof. Suppose that G is a perfect graph so that $\chi(H)=\omega(H)$ for all induced subgraphs H of G. Let H be any (fixed) induced subgraph of G. Then H is $\omega(H)$-colurable (since $\chi(H)=\omega(H)$). Since a colour class is an independent set and the largest independent set is of size α, then the number of vertices satisfies $v(H) \leq \alpha(H) \chi(H)=\alpha(H) \omega(H)$. So if G is perfect, then for every induced subgraph H of G we have $v(H) \leq \alpha(H) \omega(H)$.

We now prove the converse (actually, the contrapositive of the converse). Suppose G is not perfect. We want to show that $v(G) \geq \alpha(G) \omega(G)+1$. If we can show this for minimally imperfect graphs, then it will hold for all imperfect graphs. So without loss of generality, suppose G is minimally imperfect.

Theorem 14.14 (continued 1)

Proof (continued). Consider the stable sets S_{i} for $0 \leq i \leq \alpha \omega$ and the cliques C_{i} for $0 \leq i \leq \alpha \omega$ as given for a minimally imperfect graph in Lemma 14.16. Let \mathbf{S} and \mathbf{C} be the $n \times(\alpha \omega+1)$ incidence matrices of the families. Now the transpose of $\mathbf{S}, \mathbf{S}^{t}$, is $(\alpha \omega+1) \times n$ and so the product $\mathbf{S}^{t} \mathbf{C}$ exists and is $(\alpha \omega+1) \times(\alpha \omega+1)$. Now the i th row of \mathbf{S}^{t} consists of 0 's and 1 's, where the k th entry is 1 if $k \in S_{i}$ and 0 if $k \notin S_{i}$. The j th column of \mathbf{C} consists of 0 's and 1 's where the k th entry is 1 if $k \in C_{i}$ and 0 if $k \notin C_{i}$. The (i, j)-entry of $\mathbf{S}^{t} \mathbf{C}$ is the inner product (or "dot product") of the i th row of \mathbf{S}^{t} and the j th column of \mathbf{C}. By the third claim of
 and the i th column of \mathbf{C}, if the k th entry of one of these is 1 then the k th entry of the other is 0 . So the inner product is 0 and the (i, i)-entry of $\mathrm{S}^{t} \mathrm{C}$ is 0 . By the fourth claim of Lemma 14.16 we have $\left|C_{i} \cap S_{j}\right|=1$ for $0 \leq i<j \leq \alpha \omega$, so in the i th row of \mathbf{S}^{t} and the j th column of \mathbf{C} the k entry of both is 1 only once. So the inner product is 1 and the (i, j)-entry of $\mathbf{S}^{t} \mathrm{C}$ is 1 for $i \neq j$.

Theorem 14.14 (continued 1)

Proof (continued). Consider the stable sets S_{i} for $0 \leq i \leq \alpha \omega$ and the cliques C_{i} for $0 \leq i \leq \alpha \omega$ as given for a minimally imperfect graph in Lemma 14.16. Let \mathbf{S} and \mathbf{C} be the $n \times(\alpha \omega+1)$ incidence matrices of the families. Now the transpose of $\mathbf{S}, \mathbf{S}^{t}$, is $(\alpha \omega+1) \times n$ and so the product $\mathbf{S}^{t} \mathbf{C}$ exists and is $(\alpha \omega+1) \times(\alpha \omega+1)$. Now the i th row of \mathbf{S}^{t} consists of 0 's and 1 's, where the k th entry is 1 if $k \in S_{i}$ and 0 if $k \notin S_{i}$. The j th column of \mathbf{C} consists of 0 's and 1 's where the k th entry is 1 if $k \in C_{i}$ and 0 if $k \notin C_{i}$. The (i, j)-entry of $\mathbf{S}^{t} \mathbf{C}$ is the inner product (or "dot product") of the i th row of \mathbf{S}^{t} and the j th column of \mathbf{C}. By the third claim of Lemma 14.16 we have $C_{i} \cap S_{i}=\varnothing$ for $0 \leq i \leq \alpha \omega$, so in the i th row of \mathbf{S}^{t} and the i th column of \mathbf{C}, if the k th entry of one of these is 1 then the k th entry of the other is 0 . So the inner product is 0 and the (i, i)-entry of $\mathbf{S}^{t} \mathbf{C}$ is 0 . By the fourth claim of Lemma 14.16 we have $\left|C_{i} \cap S_{j}\right|=1$ for $0 \leq i<j \leq \alpha \omega$, so in the i th row of \mathbf{S}^{t} and the j th column of \mathbf{C} the k entry of both is 1 only once. So the inner product is 1 and the (i, j)-entry of $\mathbf{S}^{t} \mathbf{C}$ is 1 for $i \neq j$.

Theorem 14.14 (continued 2)

Proof (continued). Therefore, $\mathbf{S}^{t} \mathbf{C}=\mathbf{J}-\mathbf{I}$ where \mathbf{J} is the $(\alpha \omega+1) \times(\alpha \omega+1)$ matrix of all 1 's and \mathbf{I} is the $(\alpha \omega+1) \times(\alpha \omega+1)$ identity matrix. Now $\mathbf{J}-\mathbf{I}$ is nonsingular (i.e., invertible) because the inverse is $(1 /(\alpha \omega)) \mathbf{J}-\mathbf{I}$ because

$$
\begin{gathered}
(\mathbf{J}-\mathbf{I})\left(\frac{1}{\alpha \omega} \mathbf{J}-\mathbf{I}\right)=\frac{1}{\alpha \omega} \mathbf{J}^{2}-\mathbf{J}-\frac{1}{\alpha \omega} \mathbf{J}+\mathbf{I}^{2}=\frac{1}{\alpha \omega} \mathbf{J}^{2}-\left(1+\frac{1}{\alpha \omega}\right) \mathbf{J}+\mathbf{I} \\
=\frac{1}{\alpha \omega}((\alpha \omega+1) \mathbf{J})-\left(\frac{\alpha \omega+1}{\alpha \omega}\right) \mathbf{J}+\mathbf{I}=\frac{\alpha \omega+1}{\alpha \omega} \mathbf{J}-\frac{\alpha \omega+1}{\alpha \omega} \mathbf{J}+\mathbf{I}=\mathbf{I} .
\end{gathered}
$$

This shows that $(1 /(\alpha \omega)) \mathbf{J}-\mathbf{I}$ is a right inverse of $\mathbf{J}-\mathbf{I}$, but since \mathbf{I} and \mathbf{J} commute, this is sufficient to establish that we have a two-sided inverse (see also "Theorem 1.11. A Commutative Property" in my Linear Algebra [MATH 2010] online notes on Section 1.5. Inverses of Matrices, and Linear Systems). Since J-I is invertible, then it must be a full-rank $\alpha \omega+1$ (see "Theorem 2.6. An Invertible Criteria" in my Linear Algebra online notes on Section 2.2. The Rank of a Matrix).

Theorem 14.14 (continued 2)

Proof (continued). Therefore, $\mathbf{S}^{t} \mathbf{C}=\mathbf{J}-\mathbf{I}$ where \mathbf{J} is the $(\alpha \omega+1) \times(\alpha \omega+1)$ matrix of all 1 's and \mathbf{I} is the $(\alpha \omega+1) \times(\alpha \omega+1)$ identity matrix. Now $\mathbf{J}-\mathbf{I}$ is nonsingular (i.e., invertible) because the inverse is $(1 /(\alpha \omega)) \mathbf{J}-\mathbf{I}$ because

$$
\begin{aligned}
& (\mathbf{J}-\mathbf{I})\left(\frac{1}{\alpha \omega} \mathbf{J}-\mathbf{I}\right)=\frac{1}{\alpha \omega} \mathbf{J}^{2}-\mathbf{J}-\frac{1}{\alpha \omega} \mathbf{J}+\mathbf{I}^{2}=\frac{1}{\alpha \omega} \mathbf{J}^{2}-\left(1+\frac{1}{\alpha \omega}\right) \mathbf{J}+\mathbf{I} \\
& =\frac{1}{\alpha \omega}((\alpha \omega+1) \mathbf{J})-\left(\frac{\alpha \omega+1}{\alpha \omega}\right) \mathbf{J}+\mathbf{I}=\frac{\alpha \omega+1}{\alpha \omega} \mathbf{J}-\frac{\alpha \omega+1}{\alpha \omega} \mathbf{J}+\mathbf{I}=\mathbf{I} .
\end{aligned}
$$

This shows that $(1 /(\alpha \omega)) \mathbf{J}-\mathbf{I}$ is a right inverse of $\mathbf{J}-\mathbf{I}$, but since \mathbf{I} and \mathbf{J} commute, this is sufficient to establish that we have a two-sided inverse (see also "Theorem 1.11. A Commutative Property" in my Linear Algebra [MATH 2010] online notes on Section 1.5. Inverses of Matrices, and Linear Systems). Since J-I is invertible, then it must be a full-rank $\alpha \omega+1$ (see "Theorem 2.6. An Invertible Criteria" in my Linear Algebra online notes on Section 2.2. The Rank of a Matrix).

Theorem 14.14 (continued 3)

Theorem 14.14. A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H) \omega(H)$.

Proof (continued). Recall that the rank of a matrix in the (common) dimension of the row space and the column space. In general, $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$ (see Exercises 2.2.18 and 2.2.20 in J. Fraleigh and R. Beauregard's Linear Algebra, 3rd Edition, Addison-Wesley (1994), or see Theorem 3.3.5 in my online notes for Theory of Matrices [MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix) so

$$
\alpha \omega+1=\operatorname{rank}(\mathbf{J}-\mathbf{I})=\operatorname{rank}\left(\mathbf{S}^{t} \mathbf{C}\right) \leq \min \left\{\operatorname{rank}\left(\mathbf{S}^{t}\right), \operatorname{rank}(\mathbf{C})\right\} .
$$

Now the row rank equals the column rank for any matrix (see "Theorem 2.4. Row Rank Equals Column Rank" in my Linear Algebra notes on Section 2.2. The Rank of a Matrix), so we have $\operatorname{rank}(\mathbf{S})=\alpha \omega+1$ and $\operatorname{rank}(\mathbf{C})=\alpha \omega+1$ since the rank can't be greater than the number of rows or the number of columns.

Theorem 14.14 (continued 3)

Theorem 14.14. A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H) \omega(H)$.

Proof (continued). Recall that the rank of a matrix in the (common) dimension of the row space and the column space. In general, $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$ (see Exercises 2.2.18 and 2.2.20 in J. Fraleigh and R. Beauregard's Linear Algebra, 3rd Edition, Addison-Wesley (1994), or see Theorem 3.3.5 in my online notes for Theory of Matrices [MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix) so

$$
\alpha \omega+1=\operatorname{rank}(\mathbf{J}-\mathbf{I})=\operatorname{rank}\left(\mathbf{S}^{t} \mathbf{C}\right) \leq \min \left\{\operatorname{rank}\left(\mathbf{S}^{t}\right), \operatorname{rank}(\mathbf{C})\right\} .
$$

Now the row rank equals the column rank for any matrix (see "Theorem 2.4. Row Rank Equals Column Rank" in my Linear Algebra notes on Section 2.2. The Rank of a Matrix), so we have $\operatorname{rank}(\mathbf{S})=\alpha \omega+1$ and $\operatorname{rank}(\mathbf{C})=\alpha \omega+1$ since the rank can't be greater than the number of rows or the number of columns.

Theorem 14.14 (continued 4)

Theorem 14.14. A graph G is perfect if and only if every induced subgraph H of G satisfies the inequality $v(H) \leq \alpha(H) \omega(H)$.

Proof (continued).

Both \mathbf{S} and \mathbf{C} have n row, so the number of rows must be at least as big as the rank, hence $n \geq \alpha \omega+1$. That is, for minimally imperfect graph G, $v(G) \geq \alpha(G) \omega(G)+1$. As explained above, the general claim now holds.

