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Proposition 14.15

Proposition 14.15

Proposition 14.15. Let S be a stable set in a minimally imperfect graph
G . Then ω(G − S) = ω(G ).

Proof. This is easy with the use of Exercise 14.4.5, which states that for
S a stable set in a minimally imperfect graph G we have

ω(G − S) ≤ ω(G ) ≤ χ(G )− 1 ≤ χ(G − S) = ω(G − S).

Since the left and right terms are the same, then the inequalities reduce to
equalities.
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Lemma 14.16

Lemma 14.16

Lemma 14.16. Let G be a minimally imperfect graph with stability
number α and clique number ω. Then G contains αω + 1 stable sets
S0,S1, . . . ,Sαω and αω + 1 cliques C0,C1, . . . ,Cαω such that:

• each vertex of G belongs to precisely α of the stable sets Si ,
• each clique Ci has ω vertices,
• Ci ∩ Si = ∅ for 0 ≤ i ≤ αω, and
• |Ci ∩ Sj | = 1 for 0 ≤ i < j ≤ αω.

Proof. Let S0 be a stable set of α vertices of G , and let v ∈ S0 (of course
|S0| ≥ 1). The graph G − v is perfect because G is minimally imperfect
(note that G − v is the subgraph of G induced by V (G ) \ {v}). So by the
definition of “perfect graph” and Note 14.1.B,
χ(G − v) = ω(G − v) ≤ ω(G ).

Since the colours classes of a proper
colouring are each stable sets, we then have for any v ∈ S0 that the set
V \ {v} can be partitioned into a family Sv of ω stable sets (the inequality
tells us that there are at most ω stable sets, but the stable sets can be
further subdivided to get a total of ω stable sets).
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Lemma 14.16

Lemma 14.16 (continued 1)

Proof (continued). Since |S0| = α then there are α such v in S0, since
each family Sv contains ω stable sets, then there are αω stable sets in the
totality of the families S1,S2, . . . ,Sα. Denote these stable sets as
S1,S2, . . . ,Sαω. We’ll see below that each Sj is nonempty when we
establish the fourth claim. For each v a vertex of G where v ∈ S0, we
have that v ∈ Si for some unique Si in family Sw where w 6= v . So this v
is in S0 and all but one of S1,S2, . . . ,Sα; that is, v is in α of the stable
sets Si . For each v a vertex of G where v 6∈ S0, we have that v is in some
unique Si in family Sj for each 1 ≤ j ≤ α; that is, v is in α of the stable
sets Si . Therefore the first claim holds.

By Proposition 14.15, the clique numbers satisfy ω(G − Si ) = ω(G ) for
each 0 ≤ i ≤ αω. Therefore there is a maximum clique Ci of G − Si that
is also a maximum clique of G . Each Ci has ω = ω(G ) vertices, so the
second claim holds. So there is a maximum clique Ci of G that is disjoint
from Si and the third claim holds.
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Lemma 14.16

Lemma 14.16 (continued 2)

Lemma 14.16. Let G be a minimally imperfect graph with stability
number α and clique number ω. Then G contains αω + 1 stable sets
S0,S1, . . . ,Sαω and αω + 1 cliques C0,C1, . . . ,Cαω such that:

• each vertex of G belongs to precisely α of the stable sets Si ,

• each clique Ci has ω vertices,

• Ci ∩ Si = ∅ for 0 ≤ i ≤ αω, and

• |Ci ∩ Sj | = 1 for 0 ≤ i < j ≤ αω.

Proof (continued). Because each of the ω vertices of Ci lie in α of the
stable sets (by the first claim), there are αω + 1 stable sets (but
Ci ∩ Si = ∅ for 0 ≤ i ≤ αω by the third claim), and no two vertices of
clique Ci can belong to a common stable set (since vertices of a clique are
adjacent and vertices of a stable set are not adjacent), then each Ci shares
exactly one point with each Sj where i 6= j . That is, |Ci ∩ Sj | = 1 for
0 ≤ i < j ≤ αω, and the fourth claim holds.
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Theorem 14.14

Theorem 14.14

Theorem 14.14. A graph G is perfect if and only if every induced
subgraph H of G satisfies the inequality v(H) ≤ α(H)ω(H).

Proof. Suppose that G is a perfect graph so that χ(H) = ω(H) for all
induced subgraphs H of G . Let H be any (fixed) induced subgraph of G .
Then H is ω(H)-colurable (since χ(H) = ω(H)). Since a colour class is an
independent set and the largest independent set is of size α, then the
number of vertices satisfies v(H) ≤ α(H)χ(H) = α(H)ω(H). So if G is
perfect, then for every induced subgraph H of G we have
v(H) ≤ α(H)ω(H).

We now prove the converse (actually, the contrapositive of the converse).
Suppose G is not perfect. We want to show that v(G ) ≥ α(G )ω(G ) + 1.
If we can show this for minimally imperfect graphs, then it will hold for all
imperfect graphs. So without loss of generality, suppose G is minimally
imperfect.
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Theorem 14.14

Theorem 14.14 (continued 1)

Proof (continued). Consider the stable sets Si for 0 ≤ i ≤ αω and the
cliques Ci for 0 ≤ i ≤ αω as given for a minimally imperfect graph in
Lemma 14.16. Let S and C be the n × (αω + 1) incidence matrices of the
families. Now the transpose of S, St , is (αω + 1)× n and so the product
StC exists and is (αω + 1)× (αω + 1). Now the ith row of St consists of
0’s and 1’s, where the kth entry is 1 if k ∈ Si and 0 if k 6∈ Si . The jth
column of C consists of 0’s and 1’s where the kth entry is 1 if k ∈ Ci and
0 if k 6∈ Ci . The (i , j)-entry of StC is the inner product (or “dot product”)
of the ith row of St and the jth column of C. By the third claim of
Lemma 14.16 we have Ci ∩ Si = ∅ for 0 ≤ i ≤ αω, so in the ith row of St

and the ith column of C, if the kth entry of one of these is 1 then the kth
entry of the other is 0. So the inner product is 0 and the (i , i)-entry of
StC is 0. By the fourth claim of Lemma 14.16 we have |Ci ∩ Sj | = 1 for
0 ≤ i < j ≤ αω, so in the ith row of St and the jth column of C the k
entry of both is 1 only once. So the inner product is 1 and the (i , j)-entry
of StC is 1 for i 6= j .
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Theorem 14.14

Theorem 14.14 (continued 2)

Proof (continued). Therefore, StC = J− I where J is the
(αω + 1)× (αω + 1) matrix of all 1’s and I is the (αω + 1)× (αω + 1)
identity matrix. Now J− I is nonsingular (i.e., invertible) because the
inverse is (1/(αω))J− I because

(J− I)

(
1

αω
J− I

)
=

1

αω
J2 − J− 1

αω
J + I2 =

1

αω
J2 −

(
1 +

1

αω

)
J + I

=
1

αω
((αω + 1)J)−

(
αω + 1

αω

)
J + I =

αω + 1

αω
J− αω + 1

αω
J + I = I.

This shows that (1/(αω))J− I is a right inverse of J− I, but since I and J
commute, this is sufficient to establish that we have a two-sided inverse
(see also “Theorem 1.11. A Commutative Property” in my Linear Algebra
[MATH 2010] online notes on Section 1.5. Inverses of Matrices, and Linear
Systems). Since J− I is invertible, then it must be a full-rank αω + 1 (see
“Theorem 2.6. An Invertible Criteria” in my Linear Algebra online notes on
Section 2.2. The Rank of a Matrix).
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Theorem 14.14

Theorem 14.14 (continued 3)

Theorem 14.14. A graph G is perfect if and only if every induced
subgraph H of G satisfies the inequality v(H) ≤ α(H)ω(H).

Proof (continued). Recall that the rank of a matrix in the (common)
dimension of the row space and the column space. In general,
rank(AB) ≤ min{rank(A), rank(B)} (see Exercises 2.2.18 and 2.2.20 in J.
Fraleigh and R. Beauregard’s Linear Algebra, 3rd Edition, Addison-Wesley
(1994), or see Theorem 3.3.5 in my online notes for Theory of Matrices
[MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank
Matrix) so

αω + 1 = rank(J− I) = rank(StC) ≤ min{rank(St), rank(C)}.
Now the row rank equals the column rank for any matrix (see “Theorem
2.4. Row Rank Equals Column Rank” in my Linear Algebra notes on
Section 2.2. The Rank of a Matrix), so we have rank(S) = αω + 1 and
rank(C) = αω + 1 since the rank can’t be greater than the number of rows
or the number of columns.

() Graph Theory June 17, 2022 10 / 11

https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-3.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-3.pdf
https://faculty.etsu.edu/gardnerr/2010/c2s2.pdf


Theorem 14.14

Theorem 14.14 (continued 3)

Theorem 14.14. A graph G is perfect if and only if every induced
subgraph H of G satisfies the inequality v(H) ≤ α(H)ω(H).

Proof (continued). Recall that the rank of a matrix in the (common)
dimension of the row space and the column space. In general,
rank(AB) ≤ min{rank(A), rank(B)} (see Exercises 2.2.18 and 2.2.20 in J.
Fraleigh and R. Beauregard’s Linear Algebra, 3rd Edition, Addison-Wesley
(1994), or see Theorem 3.3.5 in my online notes for Theory of Matrices
[MATH 5090] on Section 3.3. Matrix Rank and the Inverse of a Full Rank
Matrix) so

αω + 1 = rank(J− I) = rank(StC) ≤ min{rank(St), rank(C)}.
Now the row rank equals the column rank for any matrix (see “Theorem
2.4. Row Rank Equals Column Rank” in my Linear Algebra notes on
Section 2.2. The Rank of a Matrix), so we have rank(S) = αω + 1 and
rank(C) = αω + 1 since the rank can’t be greater than the number of rows
or the number of columns.

() Graph Theory June 17, 2022 10 / 11

https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-3.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-3.pdf
https://faculty.etsu.edu/gardnerr/2010/c2s2.pdf


Theorem 14.14

Theorem 14.14 (continued 4)

Theorem 14.14. A graph G is perfect if and only if every induced
subgraph H of G satisfies the inequality v(H) ≤ α(H)ω(H).

Proof (continued).
Both S and C have n row, so the number of rows must be at least as big
as the rank, hence n ≥ αω + 1. That is, for minimally imperfect graph G ,
v(G ) ≥ α(G )ω(G ) + 1. As explained above, the general claim now
holds.
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