Graph Theory

Chapter 14. Vertex Colourings

14.6. The Adjacency Polynomial—Proofs of Theorems

Table of contents

(1) Proposition 14.23
(2) Theorem 14.24. The Combinatorial Nullstellensatz
(3) Corollary 14.25

Proposition 14.23

Proposition 14.23. Let f be a polynomial, not the zero polynomial, over a field \mathbb{F} in the variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, of degree d_{i} in x_{i} for $1 \leq i \leq n$. Let L_{i} be a set of $d_{i}+1$ elements of \mathbb{F} for $1 \leq i \leq n$. Then there exists $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$.

Proof. We give an inductive proof based on the number n of variables in f. For the base case $n=1$, we have a polynomial in one variable and we know that such a polynomial has at most n distinct roots; see Corollary 23.5 in my online notes for Introduction to Modern Algebra (MATH $4127 / 5127$) on Section IV.23. Factorizations of Polynomials. Since L_{1} contains $d_{1}+1=n+1$ elements of \mathbb{F}, then for some $t \in L_{1}$ we must have $f(t) \neq 0$ so that the base case holds.

Proposition 14.23

Proposition 14.23. Let f be a polynomial, not the zero polynomial, over a field \mathbb{F} in the variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, of degree d_{i} in x_{i} for $1 \leq i \leq n$. Let L_{i} be a set of $d_{i}+1$ elements of \mathbb{F} for $1 \leq i \leq n$. Then there exists $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$.

Proof. We give an inductive proof based on the number n of variables in f. For the base case $n=1$, we have a polynomial in one variable and we know that such a polynomial has at most n distinct roots; see Corollary 23.5 in my online notes for Introduction to Modern Algebra (MATH $4127 / 5127$) on Section IV.23. Factorizations of Polynomials. Since L_{1} contains $d_{1}+1=n+1$ elements of \mathbb{F}, then for some $t \in L_{1}$ we must have $f(t) \neq 0$ so that the base case holds. For the induction hypothesis, suppose the claim holds for all polynomials in $n=k-1$ variables. Suppose f is a polynomial (not the zero polynomial) in $n=k$ variables where $n \geq 2$.

Proposition 14.23

Proposition 14.23. Let f be a polynomial, not the zero polynomial, over a field \mathbb{F} in the variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, of degree d_{i} in x_{i} for $1 \leq i \leq n$. Let L_{i} be a set of $d_{i}+1$ elements of \mathbb{F} for $1 \leq i \leq n$. Then there exists $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$.

Proof. We give an inductive proof based on the number n of variables in f. For the base case $n=1$, we have a polynomial in one variable and we know that such a polynomial has at most n distinct roots; see Corollary 23.5 in my online notes for Introduction to Modern Algebra (MATH $4127 / 5127$) on Section IV.23. Factorizations of Polynomials. Since L_{1} contains $d_{1}+1=n+1$ elements of \mathbb{F}, then for some $t \in L_{1}$ we must have $f(t) \neq 0$ so that the base case holds. For the induction hypothesis, suppose the claim holds for all polynomials in $n=k-1$ variables. Suppose f is a polynomial (not the zero polynomial) in $n=k$ variables where $n \geq 2$.

Proposition 14.23 (continued)

Proof (continued). First, express f in the form $f=\sum_{j=0}^{d_{n}} f_{j} x_{n}^{j}$ where the coefficients f_{j} for $0 \leq j \leq n$ are themselves polynomials in the $n-1=k-1$ variables $x_{1}, x_{2}, \ldots, x_{n-1}$. Since f is not the zero polynomial by hypothesis, then f_{j} is not the zero polynomial for some $o \leq j \leq d_{n}$. By the induction hypothesis, there is $t_{i} \in L_{i}$ for $1 \leq i \leq k-1$ such that $f_{j}\left(t_{1}, t_{2}, \ldots, t_{k-1}\right) \neq 0$. Therefore the polynomial $\sum_{j=0} f_{j}\left(t_{1}, t_{2}, \ldots, t_{k-1}\right) x_{k}^{j}$ is not the zero polynomial. This is a polynomial in one variable and so by the case $n=1$, for some $t_{k} \in L_{k}$ we have $\sum f_{j}\left(t_{1}, t_{2}, \ldots, t_{k-1}\right)\left(t_{k}\right)^{j} \neq 0$. That is, $f\left(t_{1}, t_{2}, \ldots, t_{k}\right) \neq 0$. So the induction step holds. Therefore by mathematical induction, the result holds in general.

Proposition 14.23 (continued)

Proof (continued). First, express f in the form $f=\sum_{j=0}^{d_{n}} f_{j} x_{n}^{j}$ where the coefficients f_{j} for $0 \leq j \leq n$ are themselves polynomials in the $n-1=k-1$ variables $x_{1}, x_{2}, \ldots, x_{n-1}$. Since f is not the zero polynomial by hypothesis, then f_{j} is not the zero polynomial for some $o \leq j \leq d_{n}$. By the induction hypothesis, there is $t_{i} \in L_{i}$ for $1 \leq i \leq k-1$ such that $f_{j}\left(t_{1}, t_{2}, \ldots, t_{k-1}\right) \neq 0$. Therefore the polynomial $\sum_{j=0}^{d_{k}} f_{j}\left(t_{1}, t_{2}, \ldots, t_{k-1}\right) x_{k}^{j}$ is not the zero polynomial. This is a polynomial in one variable and so by the case $n=1$, for some $t_{k} \in L_{k}$ we have $\sum_{j=0}^{d_{k}} f_{j}\left(t_{1}, t_{2}, \ldots, t_{k-1}\right)\left(t_{k}\right)^{j} \neq 0$. That is, $f\left(t_{1}, t_{2}, \ldots, t_{k}\right) \neq 0$. So the induction step holds. Therefore by mathematical induction, the result holds in general.

Theorem 14.24. The Combinatorial Nullstellensatz

Theorem 14.24. The Combinatorial Nullstellensatz.
Let f be a polynomial over a field \mathbb{F} in the variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Suppose that the total degree of f is $\sum_{i=1}^{n} d_{i}$ and that the coefficient in f of $\prod_{i=1}^{n} x_{i}^{d_{i}}$ is nonzero. Let L_{i} be a set of $d_{i}+1$ elements of \mathbb{F} for $1 \leq i \leq n$. Then there exists $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$.

Proof. For $1 \leq i \leq n$, set $f_{i}=\prod_{t \in L_{i}}\left(x_{i}-t\right)$ (notice that i is fixed and it
is $t \in L_{i}$ that varies). The f_{i} is a polynomial of degree $\left|L_{i}\right|=d_{i}+1$ with leading term $x_{i}^{d_{i}+1}$. Hence we can $f_{i}=g_{i}+x_{i}^{d_{i}+1}$ where g_{i} is a polynomial in X_{i} of degree at most d_{i}.

Theorem 14.24. The Combinatorial Nullstellensatz

Theorem 14.24. The Combinatorial Nullstellensatz.

Let f be a polynomial over a field \mathbb{F} in the variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Suppose that the total degree of f is $\sum_{i=1}^{n} d_{i}$ and that the coefficient in f of $\prod_{i=1}^{n} x_{i}^{d_{i}}$ is nonzero. Let L_{i} be a set of $d_{i}+1$ elements of \mathbb{F} for $1 \leq i \leq n$. Then there exists $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$.

Proof. For $1 \leq i \leq n$, set $f_{i}=\prod_{t \in L_{i}}\left(x_{i}-t\right)$ (notice that i is fixed and it is $t \in L_{i}$ that varies). The f_{i} is a polynomial of degree $\left|L_{i}\right|=d_{i}+1$ with leading term $x_{i}^{d_{i}+1}$. Hence we can $f_{i}=g_{i}+x_{i}^{d_{i}+1}$ where g_{i} is a polynomial in X_{i} of degree at most d_{i}. In polynomial f, we can substitute for all expressions $x_{i}^{d_{i}+1}$ the expression $-g_{i}$ where the substitution is repeated until all powers of x_{i} are less than $d_{i}+1$, to obtain a "new polynomial" in which the degree of x_{i} does not exceed d_{i}. We can perform similar substitutions in the new polynomial for all other i with $1 \leq i \leq n$ to create the polynomial g in which each x_{i} has an exponent of at most d_{i} (for all $1 \leq i \leq n$).

Theorem 14.24. The Combinatorial Nullstellensatz

Theorem 14.24. The Combinatorial Nullstellensatz.

Let f be a polynomial over a field \mathbb{F} in the variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Suppose that the total degree of f is $\sum_{i=1}^{n} d_{i}$ and that the coefficient in f of $\prod_{i=1}^{n} x_{i}^{d_{i}}$ is nonzero. Let L_{i} be a set of $d_{i}+1$ elements of \mathbb{F} for $1 \leq i \leq n$. Then there exists $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$.

Proof. For $1 \leq i \leq n$, set $f_{i}=\prod_{t \in L_{i}}\left(x_{i}-t\right)$ (notice that i is fixed and it is $t \in L_{i}$ that varies). The f_{i} is a polynomial of degree $\left|L_{i}\right|=d_{i}+1$ with leading term $x_{i}^{d_{i}+1}$. Hence we can $f_{i}=g_{i}+x_{i}^{d_{i}+1}$ where g_{i} is a polynomial in X_{i} of degree at most d_{i}. In polynomial f, we can substitute for all expressions $x_{i}^{d_{i}+1}$ the expression $-g_{i}$ where the substitution is repeated until all powers of x_{i} are less than $d_{i}+1$, to obtain a "new polynomial" in which the degree of x_{i} does not exceed d_{i}. We can perform similar substitutions in the new polynomial for all other i with $1 \leq i \leq n$ to create the polynomial g in which each x_{i} has an exponent of at most d_{i} (for all $1 \leq i \leq n$).

Theorem 14.24 (continued 1)

Proof (continued). Moreover, since for each $t \in L_{i}$ we have $f_{i}(t)=0$ and since $f_{i}=g_{i}+x_{i}^{d_{i}+1}$, then $\left.t^{d_{i}+1}=-g_{i}\right) t$) for all $t \in L_{i}$ where $1 \leq i \leq n$. This implies that $g(\mathbf{t})=f(\mathbf{t})$ for all $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ because for the components of \mathbf{t} the substitution $t^{d_{i}+1}=-g_{i}(t)$ is valid.

Now for every monomial in f, the sum of the exponents is at most $\sum_{i=1}^{n} d_{i}$, so if a monomial has x_{i} to a power greater than or equal to $d_{i}+1$ then one of the other terms of the monomial must be of the form $x_{j}^{e_{j}}$ where $e_{j}<d_{j}$. Hence, the process above of reducing the exponent on x_{i} to be at most d_{i} to create g yields a monomial of total degree strictly less than $\sum_{i=1}^{n} d_{i}$

Theorem 14.24 (continued 1)

Proof (continued). Moreover, since for each $t \in L_{i}$ we have $f_{i}(t)=0$ and since $f_{i}=g_{i}+x_{i}^{d_{i}+1}$, then $\left.t^{d_{i}+1}=-g_{i}\right) t$) for all $t \in L_{i}$ where $1 \leq i \leq n$. This implies that $g(\mathbf{t})=f(\mathbf{t})$ for all $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ because for the components of \mathbf{t} the substitution $t^{d_{i}+1}=-g_{i}(t)$ is valid.

Now for every monomial in f, the sum of the exponents is at most $\sum_{i=1}^{n} d_{i}$, so if a monomial has x_{i} to a power greater than or equal to $d_{i}+1$ then one of the other terms of the monomial must be of the form $x_{j}^{e_{j}}$ where $e_{j}<d_{j}$. Hence, the process above of reducing the exponent on x_{i} to be at most d_{i} to create g yields a monomial of total degree strictly less than $\sum_{i=1}^{n} d_{i}$. Notice that g has the monomial term $\prod_{i=1}^{n} x_{i}^{d_{i}}$ (with some coefficient) is present in both f and g (since the process of creating g does not affect the $x_{i}^{d_{i}}$ terms). Since all other monomials of g are of total degree strictly less than $\sum_{i=1}^{n} d_{i}$, then they cannot cancel with $\prod_{i=1}^{n} x_{i}^{d_{i}}$. That is, g is not the zero polynomial.

Theorem 14.24 (continued 1)

Proof (continued). Moreover, since for each $t \in L_{i}$ we have $f_{i}(t)=0$ and since $f_{i}=g_{i}+x_{i}^{d_{i}+1}$, then $\left.t^{d_{i}+1}=-g_{i}\right) t$) for all $t \in L_{i}$ where $1 \leq i \leq n$. This implies that $g(\mathbf{t})=f(\mathbf{t})$ for all $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ because for the components of \mathbf{t} the substitution $t^{d_{i}+1}=-g_{i}(t)$ is valid.

Now for every monomial in f, the sum of the exponents is at most $\sum_{i=1}^{n} d_{i}$, so if a monomial has x_{i} to a power greater than or equal to $d_{i}+1$ then one of the other terms of the monomial must be of the form $x_{j}^{e_{j}}$ where $e_{j}<d_{j}$. Hence, the process above of reducing the exponent on x_{i} to be at most d_{i} to create g yields a monomial of total degree strictly less than $\sum_{i=1}^{n} d_{i}$. Notice that g has the monomial term $\prod_{i=1}^{n} x_{i}^{d_{i}}$ (with some coefficient) is present in both f and g (since the process of creating g does not affect the $x_{i}^{d_{i}}$ terms). Since all other monomials of g are of total degree strictly less than $\sum_{i=1}^{n} d_{i}$, then they cannot cancel with $\prod_{i=1}^{n} x_{i}^{d_{i}}$. That is, g is not the zero polynomial.

Theorem 14.24 (continued 2)

Theorem 14.24. The Combinatorial Nullstellensatz.

Let f be a polynomial over a field \mathbb{F} in the variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Suppose that the total degree of f is $\sum_{i=1}^{n} d_{i}$ and that the coefficient in f of $\prod_{i=1}^{n} x_{i}^{d_{i}}$ is nonzero. Let L_{i} be a set of $d_{i}+1$ elements of \mathbb{F} for $1 \leq i \leq n$. Then there exists $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$.

Proof (continued). Now by applying Proposition 14.23 to g, we have that there exists $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $g(\mathbf{t}) \neq 0$. Since $f(\mathbf{t}=g(\mathbf{t})$ for all such \mathbf{t}, then $f(\mathbf{t}) \neq 0$, as claimed.

Corollary 14.25

Corollary 14.25. If G has an odd number of orientations D with outdegree sequence \mathbf{d}, then G is $(\mathbf{d}+\mathbf{1})$-list-colourable.

Proof. For D an orientation of G, we have that the sign of D is $\sigma(D) \in\{-1,+1\}$. Since we hypothesize an odd number of orientations of D with outdegree sequence \mathbf{d}, then the weight of \mathbf{d} is $w(\mathbf{d})=\sum \sigma(D) \neq 0$ since we can only get 0 with the same number of positive and negative orientations (and hence an even number of orientations). So in $A(G, \mathbf{x})=\sum_{\mathbf{d}} w(\mathbf{d}) \mathbf{x}^{\mathbf{d}}$ the monomial $\prod_{i=1}^{n} x_{i}^{d_{i}}$ has a nonzero coefficient.

Corollary 14.25

Corollary 14.25. If G has an odd number of orientations D with outdegree sequence \mathbf{d}, then G is $(\mathbf{d}+\mathbf{1})$-list-colourable.

Proof. For D an orientation of G, we have that the sign of D is $\sigma(D) \in\{-1,+1\}$. Since we hypothesize an odd number of orientations of D with outdegree sequence \mathbf{d}, then the weight of \mathbf{d} is $w(\mathbf{d})=\sum \sigma(D) \neq 0$ since we can only get 0 with the same number of positive and negative orientations (and hence an even number of orientations). So in $A(G, \mathbf{x})=\sum_{\mathbf{d}} w(\mathbf{d}) \mathbf{x}^{\mathbf{d}}$ the monomial $\prod_{i=1}^{n} x_{i}^{d_{i}}$ has a nonzero coefficient. With lists L_{i} of size $d_{i}+1$ for $1 \leq i \leq n$, we have by the Combinatorial Nullstellensatz (Theorem 14.24) with $f(\mathbf{x})=A(G, x)$ that there is $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$. Therefore (by Note 14.6.A) there is a list colouring of G using lists $L_{1}, L_{2}, \ldots, L_{n}$. That is, G is (d + 1)-list-colourable, as claimed.

Corollary 14.25

Corollary 14.25. If G has an odd number of orientations D with outdegree sequence \mathbf{d}, then G is $(\mathbf{d}+\mathbf{1})$-list-colourable.

Proof. For D an orientation of G, we have that the sign of D is $\sigma(D) \in\{-1,+1\}$. Since we hypothesize an odd number of orientations of D with outdegree sequence \mathbf{d}, then the weight of \mathbf{d} is $w(\mathbf{d})=\sum \sigma(D) \neq 0$ since we can only get 0 with the same number of positive and negative orientations (and hence an even number of orientations). So in $A(G, \mathbf{x})=\sum_{\mathbf{d}} w(\mathbf{d}) \mathbf{x}^{\mathbf{d}}$ the monomial $\prod_{i=1}^{n} x_{i}^{d_{i}}$ has a nonzero coefficient. With lists L_{i} of size $d_{i}+1$ for $1 \leq i \leq n$, we have by the Combinatorial Nullstellensatz (Theorem 14.24) with $f(\mathbf{x})=A(G, \mathbf{x})$ that there is $\mathbf{t} \in L_{1} \times L_{2} \times \cdots \times L_{n}$ such that $f(\mathbf{t}) \neq 0$. Therefore (by Note 14.6.A) there is a list colouring of G using lists $L_{1}, L_{2}, \ldots, L_{n}$. That is, G is $(\mathbf{d}+\mathbf{1})$-list-colourable, as claimed.

