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Proposition 14.23

Proposition 14.23

Proposition 14.23. Let f be a polynomial, not the zero polynomial, over
a field F in the variables x = (x1, x2, . . . , xn), of degree di in xi for
1 ≤ i ≤ n. Let Li be a set of di + 1 elements of F for 1 ≤ i ≤ n. Then
there exists t ∈ L1 × L2 × · · · × Ln such that f (t) 6= 0.

Proof. We give an inductive proof based on the number n of variables in
f . For the base case n = 1, we have a polynomial in one variable and we
know that such a polynomial has at most n distinct roots; see Corollary
23.5 in my online notes for Introduction to Modern Algebra (MATH
4127/5127) on Section IV.23. Factorizations of Polynomials. Since L1

contains d1 + 1 = n + 1 elements of F, then for some t ∈ L1 we must have
f (t) 6= 0 so that the base case holds.

For the induction hypothesis,
suppose the claim holds for all polynomials in n = k − 1 variables. Suppose
f is a polynomial (not the zero polynomial) in n = k variables where n ≥ 2.
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Proposition 14.23

Proposition 14.23 (continued)

Proof (continued). First, express f in the form f =
dn∑
j=0

fjx
j
n where the

coefficients fj for 0 ≤ j ≤ n are themselves polynomials in the
n− 1 = k − 1 variables x1, x2, . . . , xn−1. Since f is not the zero polynomial
by hypothesis, then fj is not the zero polynomial for some o ≤ j ≤ dn. By
the induction hypothesis, there is ti ∈ Li for 1 ≤ i ≤ k − 1 such that

fj(t1, t2, . . . , tk−1) 6= 0. Therefore the polynomial

dk∑
j=0

fj(t1, t2, . . . , tk−1)x
j
k

is not the zero polynomial. This is a polynomial in one variable and so by

the case n = 1, for some tk ∈ Lk we have

dk∑
j=0

fj(t1, t2, . . . , tk−1)(tk)j 6= 0.

That is, f (t1, t2, . . . , tk) 6= 0. So the induction step holds. Therefore by
mathematical induction, the result holds in general.
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Theorem 14.24. The Combinatorial Nullstellensatz

Theorem 14.24. The Combinatorial Nullstellensatz

Theorem 14.24. The Combinatorial Nullstellensatz.
Let f be a polynomial over a field F in the variables x = (x1, x2, . . . , xn).
Suppose that the total degree of f is

∑n
i=1 di and that the coefficient in f

of
∏n

i=1 xdi
i is nonzero. Let Li be a set of di + 1 elements of F for

1 ≤ i ≤ n. Then there exists t ∈ L1 × L2 × · · · × Ln such that f (t) 6= 0.

Proof. For 1 ≤ i ≤ n, set fi =
∏

t∈Li
(xi − t) (notice that i is fixed and it

is t ∈ Li that varies). The fi is a polynomial of degree |Li | = di + 1 with
leading term xdi+1

i . Hence we can fi = gi + xdi+1
i where gi is a polynomial

in Xi of degree at most di .

In polynomial f , we can substitute for all
expressions xdi+1

i the expression −gi where the substitution is repeated
until all powers of xi are less than di + 1, to obtain a “new polynomial” in
which the degree of xi does not exceed di . We can perform similar
substitutions in the new polynomial for all other i with 1 ≤ i ≤ n to create
the polynomial g in which each xi has an exponent of at most di (for all
1 ≤ i ≤ n).
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Theorem 14.24. The Combinatorial Nullstellensatz

Theorem 14.24 (continued 1)

Proof (continued). Moreover, since for each t ∈ Li we have fi (t) = 0
and since fi = gi + xdi+1

i , then tdi+1 = −gi )t) for all t ∈ Li where
1 ≤ i ≤ n. This implies that g(t) = f (t) for all t ∈ L1 × L2 × · · · × Ln

because for the components of t the substitution tdi+1 = −gi (t) is valid.

Now for every monomial in f , the sum of the exponents is at most∑n
i=1 di , so if a monomial has xi to a power greater than or equal to

di + 1 then one of the other terms of the monomial must be of the form
x

ej

j where ej < dj . Hence, the process above of reducing the exponent on
xi to be at most di to create g yields a monomial of total degree strictly
less than

∑n
i=1 di .

Notice that g has the monomial term
∏n

i=1 xdi
i (with

some coefficient) is present in both f and g (since the process of creating
g does not affect the xdi

i terms). Since all other monomials of g are of
total degree strictly less than

∑n
i=1 di , then they cannot cancel with∏n

i=1 xdi
i . That is, g is not the zero polynomial.
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Theorem 14.24. The Combinatorial Nullstellensatz

Theorem 14.24 (continued 2)

Theorem 14.24. The Combinatorial Nullstellensatz.
Let f be a polynomial over a field F in the variables x = (x1, x2, . . . , xn).
Suppose that the total degree of f is

∑n
i=1 di and that the coefficient in f

of
∏n

i=1 xdi
i is nonzero. Let Li be a set of di + 1 elements of F for

1 ≤ i ≤ n. Then there exists t ∈ L1 × L2 × · · · × Ln such that f (t) 6= 0.

Proof (continued). Now by applying Proposition 14.23 to g , we have
that there exists t ∈ L1 × L2 × · · · × Ln such that g(t) 6= 0. Since
f (t = g(t) for all such t, then f (t) 6= 0, as claimed.
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Corollary 14.25

Corollary 14.25. If G has an odd number of orientations D with
outdegree sequence d, then G is (d + 1)-list-colourable.

Proof. For D an orientation of G , we have that the sign of D is
σ(D) ∈ {−1,+1}. Since we hypothesize an odd number of orientations of
D with outdegree sequence d, then the weight of d is w(d) =

∑
σ(D) 6= 0

since we can only get 0 with the same number of positive and negative
orientations (and hence an even number of orientations). So in
A(G , x) =

∑
d w(d)xd the monomial

∏n
i=1 xdi

i has a nonzero coefficient.

With lists Li of size di + 1 for 1 ≤ i ≤ n, we have by the Combinatorial
Nullstellensatz (Theorem 14.24) with f (x) = A(G , x) that there is
t ∈ L1 × L2 × · · · × Ln such that f (t) 6= 0. Therefore (by Note 14.6.A)
there is a list colouring of G using lists L1, L2, . . . , Ln. That is, G is
(d + 1)-list-colourable, as claimed.
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