Graph Theory

Chapter 14. Vertex Colourings

14.7. The Chromatic Polynomial—Proofs of Theorems

Table of contents

(1) Theorem 14.26

Theorem 14.26

Theorem 14.26. For any loopless graph G, there exists a polynomial $P(G, x)$ such that $P(G, x)=C(G, k)$ for all nonnegative integers k. Moreover, if G is simple and e is any edge of G, then $P(G, x)$ satisfies the recursion formula:

$$
\begin{equation*}
C(G, x)=C(G \backslash e, x)-C(G / e, x) . \tag{14.6}
\end{equation*}
$$

The polynomial $P(G, x)$ is of degree n, with integer coefficients which alternate in sign, leading term x^{n}, and constant term 0.

Proof. We give an inductive proof on m, the number of edges of G. If $m=0$ then $C(G, k)=k^{n}$, as described in Note 1.7.A, and the polynomial $P(G, x)=x^{n}$ satisfies the conditions of the theorem. This establishes the base case.

Theorem 14.26

Theorem 14.26. For any loopless graph G, there exists a polynomial $P(G, x)$ such that $P(G, x)=C(G, k)$ for all nonnegative integers k. Moreover, if G is simple and e is any edge of G, then $P(G, x)$ satisfies the recursion formula:

$$
\begin{equation*}
C(G, x)=C(G \backslash e, x)-C(G / e, x) . \tag{14.6}
\end{equation*}
$$

The polynomial $P(G, x)$ is of degree n, with integer coefficients which alternate in sign, leading term x^{n}, and constant term 0 .

Proof. We give an inductive proof on m, the number of edges of G. If $m=0$ then $C(G, k)=k^{n}$, as described in Note 1.7.A, and the polynomial $P(G, x)=x^{n}$ satisfies the conditions of the theorem. This establishes the base case.

For the induction hypothesis, suppose the theorem holds for all graphs with fewer than m edges, where $m \geq 1$. Let G be a loopless graph with m edges.

Theorem 14.26

Theorem 14.26. For any loopless graph G, there exists a polynomial $P(G, x)$ such that $P(G, x)=C(G, k)$ for all nonnegative integers k. Moreover, if G is simple and e is any edge of G, then $P(G, x)$ satisfies the recursion formula:

$$
\begin{equation*}
C(G, x)=C(G \backslash e, x)-C(G / e, x) . \tag{14.6}
\end{equation*}
$$

The polynomial $P(G, x)$ is of degree n, with integer coefficients which alternate in sign, leading term x^{n}, and constant term 0.

Proof. We give an inductive proof on m, the number of edges of G. If $m=0$ then $C(G, k)=k^{n}$, as described in Note 1.7.A, and the polynomial $P(G, x)=x^{n}$ satisfies the conditions of the theorem. This establishes the base case.

For the induction hypothesis, suppose the theorem holds for all graphs with fewer than m edges, where $m \geq 1$. Let G be a loopless graph with m edges.

Theorem 14.26 (continued 1)

Proof (continued). If G is not simple, define $P(G, x)=P(H, x)$ where H satisfies the first claim, that is there is a polynomial $P(H, x)$ such that $P(H, x)=C(H, k)$ for all nonnegative integers k, the (loopless) graph G also satisfies this condition since any proper colouring of H is also a proper colouring of G (and conversely); we do not apply the operation of edge contraction here to a graph with multiple edges (this could introduce loops). If G is simple, let e be an edge of G. Both $G \backslash e$ and G / e have $m-1$ edges (in $G \backslash e$ edge e is deleted, in G / e edge e is contracted) and are loopless. By the induction hypothesis, there exists polynomials $P(G \backslash e, x)$ and $P(G / e, x)$ such that for all nonnegative integers k, we have

$$
\begin{equation*}
P(G \backslash e, k)=C(G \backslash e, k) \text { and } P(G / e, k)=c(G / e, k) . \tag{14.7}
\end{equation*}
$$

The induction hypothesis also gives the from of these polynomials.

Theorem 14.26 (continued 1)

Proof (continued). If G is not simple, define $P(G, x)=P(H, x)$ where H satisfies the first claim, that is there is a polynomial $P(H, x)$ such that $P(H, x)=C(H, k)$ for all nonnegative integers k, the (loopless) graph G also satisfies this condition since any proper colouring of H is also a proper colouring of G (and conversely); we do not apply the operation of edge contraction here to a graph with multiple edges (this could introduce loops). If G is simple, let e be an edge of G. Both $G \backslash e$ and G / e have $m-1$ edges (in $G \backslash e$ edge e is deleted, in G / e edge e is contracted) and are loopless. By the induction hypothesis, there exists polynomials $P(G \backslash e, x)$ and $P(G / e, x)$ such that for all nonnegative integers k, we have

$$
\begin{equation*}
P(G \backslash e, k)=C(G \backslash e, k) \text { and } P(G / e, k)=c(G / e, k) . \tag{14.7}
\end{equation*}
$$

The induction hypothesis also gives the from of these polynomials.

Theorem 14.26 (continued 2)

Proof (continued). There are nonnegative integer coefficients $a_{1}, a_{2}, \ldots, a_{n-1}$ and $b_{1}, b_{2}, \ldots, b_{n-1}$ with
$P(G \backslash e, x)=\sum_{i=1}^{n-1}(-1)^{n-i} a_{i} x^{i}+x^{n} \& P(G / e, x)=\sum_{i=1}^{n-1}(-1)^{n-i-1} b_{i} x^{i}$
(notice that $G \backslash e$ has n vertices, but G / e has $n-1$ vertices; by the induction hypothesis we have $\left.b_{n-1}=1\right)$. Define $P(G, x)=P(G \backslash e, x)-P(G / e, x)$ so that $P(G, x)$ satisfies the recursion relation (14.6). We now have

$$
\begin{aligned}
P(G, k) & =P(G \backslash e, k)-P(G / e, k) \text { by }(14.6) \text { with } x=k \\
& =C(G \backslash e, k)-C(G / e, k) \text { by }(14.7) \\
& =C(G, k) \text { by }(14.5)
\end{aligned}
$$

So $P(G, k)=C(G, k)$ for nonnegative integer k, as claimed.

Theorem 14.26 (continued 3)

Proof (continued). Now the form of $P(G, x)$ is:

$$
\begin{aligned}
P(G, x)= & P(G \backslash e, x)-P(G / e, x) \text { by our definition of } \\
& P(G, x) \text { in this proof } \\
= & \sum_{i=1}^{n-1}(-1)^{n-i} a_{i} x^{i}+x^{n}-\sum_{i=1}^{n-1}(-1)^{n-i-1} b_{i} x^{i} \text { by }(14.8) \\
= & \sum_{i=1}^{n-1}(-1)^{n-i}\left(a_{i}+b_{i}\right) x^{i}+x^{n}
\end{aligned}
$$

so that $P(G, x)$ is of degree n, with integer coefficients which alternate in sign (notice that $a_{i}+b_{i}$ is a nonnegative integer for each i), leading term x^{n}, and constant term 0 . This establishes the induction step. Hence, by mathematical induction, the result holds for all m and hence for all loopless graphs, or loopless simple graphs, as the hypothesis require.

Theorem 14.26 (continued 3)

Proof (continued). Now the form of $P(G, x)$ is:

$$
\begin{aligned}
P(G, x)= & P(G \backslash e, x)-P(G / e, x) \text { by our definition of } \\
& P(G, x) \text { in this proof } \\
= & \sum_{i=1}^{n-1}(-1)^{n-i} a_{i} x^{i}+x^{n}-\sum_{i=1}^{n-1}(-1)^{n-i-1} b_{i} x^{i} \text { by }(14.8) \\
= & \sum_{i=1}^{n-1}(-1)^{n-i}\left(a_{i}+b_{i}\right) x^{i}+x^{n}
\end{aligned}
$$

so that $P(G, x)$ is of degree n, with integer coefficients which alternate in sign (notice that $a_{i}+b_{i}$ is a nonnegative integer for each i), leading term x^{n}, and constant term 0 . This establishes the induction step. Hence, by mathematical induction, the result holds for all m and hence for all loopless graphs, or loopless simple graphs, as the hypothesis require.

