Graph Theory ### Chapter 15. Colourings of Maps 15.2. The Four-Colour Theorem—Proofs of Theorems Graph Theory April 18, 2023 1 / 17 Theorem 15. ## Theorem 15.2 (continued 1) ### Proof (continued). The graph $G/\{x,y\}$ obtained by identifying x and y into a single vertex z is a planar graph with fewer vertices than G, and the same number of edges. Since G is 5-critical by (i), then $G/\{x,y\}$ is 4-colourable with, say, colouring c. Now G can be 4-coloured by assigning colour c(v) to each $v \in V(G) \setminus \{x,y\}$ and assigning colour c(z) to vertices x and y. This is a CONTRADICTION to the (assumed) fact that G is a counterexample to the Four-Colour Theorem. So the assumption that G is not a triangulation is false, and hence G is a triangulation, as claimed. Theorem 15.2 ### Theorem 15.2 **Proposition 15.2.** Let G be a smallest counterexample to the Four-Colour Theorem. Then - (i) G is 5-critical, - (ii) G is a triangulation, and - (iii) G has no vertex of degree less than four. **Proof.** (i) By the definition of 5-critical, if G is not 5-critical then it has a proper subgraph that is 5-critical, contradicting the minimality of v(G) + e(G) given in Note 15.2.A(ii). So G must be 5-critical. (ii) ASSUME G is not a triangulation. Then it has a face whose boundary is a cycle C of length greater than three. Since G is planar, at least two vertices of C, say x and y, are nonadjacent in G (see the figure below). () Graph Theory April 18, 2023 3 / 17 Theorem 15 ## Theorem 15.2 (continued 2) **Proposition 15.2.** Let G be a smallest counterexample to the Four-Colour Theorem. Then - (i) G is 5-critical, - (ii) G is a triangulation, and - (iii) G has no vertex of degree less than four. **Proof (continued). (iii)** Since G is 5-critical by (i), then Theorem 14.7 implies $\delta \geq k-1=5-1=4$, as claimed. Graph Theory April 18, 2023 4 / 17 () Graph Theory April 18, 2023 5 / 17 Theorem 15.3 (continued 1) **Theorem 15.3.** A smallest counterexample G to the Four-Colour Theorem has no vertex of degree four. **Proof.** ASSUME G has a vertex v of degree four. Then G-v is a proper subgraph of G and, since G is 5-critical by Proposition 15.2(i), then G-v is 4-colourable. Let the colour classes of a 4-colouring of G-v be (V_1, V_2, V_3, V_4) . Because G itself is not 4-colourable, then v must be adjacent to one vertex of each colour. Without loss of generality, we may assume that the neighbors of v in clockwise order (so we can draw a picture) are v_1, v_2, v_3, v_4 where $v_i \in V_i$ for $1 \le i \le 4$. Denote by G_{ij} the subgraph of G induced by the set of vertices $V_i \cup V_j$ (so every vertex of G_{ij} is either colour i or colour j). We claim that v_i and v_j are in the same connected component of G_{ij} . If not, consider the component of G_{ij} that contains v_i . By interchanging colours i and j in this component, we obtain a new 4-colouring of G-v in which only three colours (all but colour i) are assigned to the neighbors of v. See the figure below. Graph Theory April 18, 2023 6 / 17 Theorem 15 ## Theorem 15.3 (continued 2) **Proof (continued).** Let P_{ij} be a $v_i v_j$ -path in G_{ij} and let C denote the cycle $vv_1P_{13}v_3v$ (see Figure 15.5). **Fig. 15.5.** Kempe's proof of the case d(v) = 4 Because C separates v_2 and v_4 (in the Figure 15.5 we have $v_2 \in \text{int}(C)$ and $v_4 \in \text{ext}(C)$), then by the Jordan Curve Theorem (Theorem 10.1), path P_{24} meets C in some point. **Proof (continued).** But then we could assign colour i to vertex v giving a 4-colouring of G, contradicting the (assumed) fact that it is not 4-colourable. So our claim that v_i and v_i are in the same component of G_{ii} holds. v_1 and v_3 in different components of G_{13} ## Theorem 15.3 (continued 3) **Theorem 15.3.** A smallest counterexample G to the Four-Colour Theorem has no vertex of degree four. **Proof (continued).** Because G is a plane graph by hypothesis, this point must be a vertex of G. But the vertices of path P_{13} are all either colour 1 or 3 and vertices of path P_{24} are all either colour 2 or 4. The existence of a vertex on both paths is therefore a CONTRADICTION. So the assumption that G has a vertex of degree four is false, and hence G has no vertex of degree four, as claimed. Graph Theory April 18, 2023 8 / 17 () Graph Theory April 18, 2023 9 / 1 ### Theorem 15.7 **Theorem 15.7.** The Birkhoff diamond is reducible. **Proof.** ASSUME G is a smallest conterexample to the Four-Colour Theorem with the Birkhoff diamond as a configuration. Because G is essentially 6-connected by Theorem 15.6 then, by Exercise 15.2.3, no edge of G can join nonconsecutive vertices on the boundary cycle of the Birkhoff diamond. Consider the plane graph G' derived from G by deleting the four internal bridge vertices (vertices u_1, u_2, u_3, u_4 in Figure 15.7), identifying vertices v_1 and v_3 to form a new vertex v_0 , deleting one of the two multiple edges between v_0 and v_2 , and joining v_0 and v_5 ; see Figure 15.8: Theorem 15. # Theorem 15.7 (continued 2) **Proof (continued).** We expect $3 \times 2 \times 2 = 12$ different colourings of the bounding cycle $C = v_1v_2v_3v_4v_5v_6v_1$. We can interchange colours 3 and 4, reducing the number of colourings to five: | | v_1 | v ₂ | <i>V</i> 3 | <i>V</i> 4 | <i>V</i> ₅ | <i>v</i> ₆ | |-----------------------|-----------------------|-----------------------|------------|------------|-----------------------|-----------------------| | c_1 | 1 | 2 | 1 | 3 | 2 | 3 | | <i>c</i> ₂ | 1 | 2 | 1 | 4 | 2 | 3 | | <i>c</i> ₃ | 1 | 3 | 1 | 4 | 2 | 3 | | <i>C</i> 4 | 1 | 3 | 1 | 4 | 2 | 4 | | <i>C</i> ₅ | 1
1
1
1
1 | 3 | 1 | 3 | 2 | 3 | Interchanging colours 3 and 4 on vertices v_4 and v_6 gives new colourings from c_1 , c_2 , and c_3 (for three more colourings). Replacing colour 3 with colour 4 on vertex v_2 gives new colourings from c_3 , c_4 , c_5 (for three more colourings); then also interchanging colours 3 and 4 on vertices v_4 and v_6 in the modified colouring of c_4 gives a new colouring (for a total of 5+3+3+1=12 colourings, as expected). # Theorem 15.7 (continued 1) **Proof (continued).** Since no edge of G can join nonconsecutive vertices on the bounding cycle (in particular, no edge of G bounds v_1 and v_3) then G' contains no loops. Because v(G') + e(G') < v(G) + e(G) and G is a smallest counterexample to the Four-Colour Theorem, there exists a 4-colouring c' of G'. The colouring c' gives rise to a partial 4-colouring of G (in fact, a 4-colouring of $G - \{u_1, u_2, u_3, u_4\}$ since v_1 and v_2 are not adjacent in G) in which: - (1) v_1 and v_3 receive the same colour, say 1, - (2) v_5 and receives a colour different from 1, say 2, - (3) v_3 receives a colour different fom 1, without loss of generality, either 2 or 3 (that is, either the same colour as v_5 or a different colour from the colour of v_5 which we take without loss of generality to be 3; we could also choose v_5 to be colour 4), - (4) v_4 and v_6 each receives a colour different from 1 or 2, namely either 3 or 4. Graph Theory April 18, 2023 11 / 1 Theorem 15 ## Theorem 15.7 (continued 3) **Proof (continued).** In colourings c_1 through c_4 it is straightforward to show that the colouring of $G - \{u_1, u_2, u_3, u_4\}$ can be extended to a colouring of G, as is to be shown in Exercise 15.2.4(a). Consider now the colouring c_5 . In this case we will use a Kempe interchange to modify c_5 to create a 4-colouring of $G - \{u_1, u_2, u_3, u_4\}$ that can be extended to a 4-colouring of G. First, consider the bipartite graph G_{34} induced by the vertices coloured 3 or 4. We claim that v_2 , v_4 , and v_6 (each of colour 3) belong to the same connected component H of G_{34} . Suppose v_2 is in some component of G_{34} , but neither v_4 nor v_6 are in this component. By swapping the colours 3 and 4 in this component, we obtain a colouring of "type" c_4 (we need to then use symmetry and interchange colours 3 and 4 to get colouring c_4 ; thus the "type" term). The other cases (a component of G_{34} containing v_4 but neither v_5 nor v_6 , and a component of G_{34} containing v_6 but neither v_2 nor v_4) are addressed in Exercise 15.2.4(b). Therefore we can assume that v_2 , v_4 , and v_6 belong to the same component H of G_{34} , as claimed. # Theorem 15.7 (continued 4) **Theorem 15.7.** The Birkhoff diamond is reducible. **Proof (continued).** Second, we have that H is an outer bridge of C in G with vertices of attachment v_2 , v_4 , and v_6 (by definition, a bridge is a connected graph so that's why we are concerned with a component of G_{34} ; notice that H cannot be an inner bridge, as seen in Figure 15.7). Next, consider the bipartite subgraph G_{12} of G induced by the vertices of colours 1 and 2. If there were a component of G_{12} which contained both v_3 and v_5 , then this component would be an outer bridge of C overlapping H, which cannot happen (by the Jordan Curve Theorem, Theorem 10.1; see Figure 15.7). So the component H' of G_{12} which contains v_3 does not contain v_5 . Interchanging colours 1 and 2 in H', we obtain a new partial 4-colouring of G. Graph Theory April 18, 2023 14 / 17 Theorem 15.2.A ### Theorem 15.2.A **Theorem 15.2.A.** A planar graph is 3-colourable if it contains no cycles of length k for $4 \le k \le 11$. **Proof.** ASSUME the claim is false. Let G be a smallest counterexample (that is, the sum v(G) + e(G) is as small as possible among all counterexamples) to eh assertion. Since G is a smallest counterexample, it does not have a cut vertex (or else we could consider the two subgraphs of G which are joined at the cut vertex and delete the vertices in the component with the lesser [or equal] chromatic number from G, except fo the cut vertex,; the resulting graph is smaller than G and yet has the same chromatic number as G, contradicting the minimality of G). That is, G is 2-connected. If G is a counterexample of G is a counterexample. Therefore G is a counterexample on their degrees. For G is a saign charges to both vertices and faces based on their degrees. For G is a saign the charge G is a saign the charge G is a face in a planar embedding of G assign the charge G is a smallest counterexample. # Theorem 15.7 (continued 5) **Theorem 15.7.** The Birkhoff diamond is reducible. **Proof (continued).** In this colouring v_1 has colour 1, v_3 and v_5 have colour 2, and vertices v_2 , v_4 , v_6 are colour 3 (we have not changed the original colours of vertices v_1 , v_2 , v_4 , v_5 , v_6 , but we have changed v_3 from colour 1 to colour 2). This partial colouring of G can be extended to a 4-colouring of G by assigning colour 2 to G0, colour 4 to G1 and G2 and G3. But G3 is a smallest counterexample to the Four-Colour Theorem and so G3 is not 4-colourable, a CONTRADICTION. So the assumption that a smallest counterexample to the Four-Colour Theorem has the Birkhoff diamond as a configuration is false. That is (by definition), the Birkhoff diamond is reducible, as claimed. April 18, 2023 Theorem 15.2 ## Theorem 15.2.A (continued) **Theorem 15.2.A.** A planar graph is 3-colourable if it contains no cycles of length k for $4 \le k \le 11$. **Proof.** In Exercise 15.2.A it is to be verified that the total charge assigned to vertices and faces is -12. For the discharging algorithm, each face of degree twelve or more transfers a charge of 3/2 to each of the vertices incident to the face. Since G is 2-connected, by Theorem 10.7 all faces of G are bounded by cycles. Because G has no 4-cycles, no edge of G can be incident with two triangles. Thus each vertex v is incident with at least $\lceil v/2 \rceil$ distinct faces of degree twelve or more (adn at most $\lfloor d(v)/2 \rfloor$ triangles). In Exercise 15.2.A it is to be shown that after the transfer of charges, all vertices and faces have nonnegative charges. Set $\mathcal U$ of unavoidable configurations is then empty. But the smallest counterexample must contain at least one element of $\mathcal U$, a CONTRADICTION. So the assumption that a (smallest) counterexample exists is false, and the claim holds.