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Theorem 15.2

Proposition 15.2. Let G be a smallest counterexample to the

Four-Colour Theorem. Then
(i) G is b-critical,

(i) G is a triangulation, and

(iii) G has no vertex of degree less than four.
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Theorem 15.2

Proposition 15.2. Let G be a smallest counterexample to the
Four-Colour Theorem. Then

(i) G is b-critical,
(i) G is a triangulation, and

(iii) G has no vertex of degree less than four.

Proof. (i) By the definition of 5-critical, if G is not 5-critical then it has a
proper subgraph that is 5-critical, contradicting the minimality of
v(G) + e(G) given in Note 15.2.A(ii). So G must be 5-critical.
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Theorem 15.2

Proposition 15.2. Let G be a smallest counterexample to the
Four-Colour Theorem. Then

(i) G is b-critical,
(i) G is a triangulation, and

(iii) G has no vertex of degree less than four.

Proof. (i) By the definition of 5-critical, if G is not 5-critical then it has a
proper subgraph that is 5-critical, contradicting the minimality of
v(G) + e(G) given in Note 15.2.A(ii). So G must be 5-critical.

(ii) ASSUME G is not a triangulation. Then it has a face whose boundary
is a cycle C of length greater than three. Since G is planar, at least two
vertices of C, say x and y, are nonadjacent in G (see the figure below).

Graph Theory April 18,2023 3 /17



Theorem 15.2

Theorem 15.2 (continued 1)

Proof (continued).

z

G/{xy}

The graph G/{x,y} obtained by identifying x and y into a single vertex z
is a planar graph with fewer vertices than G, and the same number of
edges. Since G is 5-critical by (i), then G/{x,y} is 4-colourable with, say,
colouring c¢. Now G can be 4-coloured by assigning colour ¢(v) to each

v € V(G)\ {x,y} and assigning colour c¢(z) to vertices x and y. This is a
CONTRADICTION to the (assumed) fact that G is a counterexample to
the Four-Colour Theorem. So the assumption that G is not a triangulation
is false, and hence G is a triangulation, as claimed.
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Theorem 15.2 (continued 2)

Proposition 15.2. Let G be a smallest counterexample to the
Four-Colour Theorem. Then

(i) G is b-critical,
(i) G is a triangulation, and

(iii) G has no vertex of degree less than four.

Proof (continued). (iii) Since G is 5-critical by (i), then Theorem 14.7
implies § > k—1=5—1 =4, as claimed. O
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Theorem 15.3

Theorem 15.3. A smallest counterexample G to the Four-Colour
Theorem has no vertex of degree four.
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Theorem 15.3

Theorem 15.3. A smallest counterexample G to the Four-Colour
Theorem has no vertex of degree four.

Proof. ASSUME G has a vertex v of degree four. Then G — v is a proper
subgraph of G and, since G is 5-critical by Proposition 15.2(i), then G — v
is 4-colourable. Let the colour classes of a 4-colouring of G — v be

(Va, Vo, V3, V4). Because G itself is not 4-colourable, then v must be
adjacent to one vertex of each colour. Without loss of generality, we may
assume that the neighbors of v in clockwise order (so we can draw a
picture) are vy, v, v3, va where v; € V; for 1 < < 4.
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Theorem 15.3

Theorem 15.3. A smallest counterexample G to the Four-Colour
Theorem has no vertex of degree four.

Proof. ASSUME G has a vertex v of degree four. Then G — v is a proper
subgraph of G and, since G is 5-critical by Proposition 15.2(i), then G — v
is 4-colourable. Let the colour classes of a 4-colouring of G — v be

(Va, Vo, V3, V4). Because G itself is not 4-colourable, then v must be
adjacent to one vertex of each colour. Without loss of generality, we may
assume that the neighbors of v in clockwise order (so we can draw a
picture) are vy, v, v3, va where v; € V; for 1 < < 4.

Denote by Gj; the subgraph of G induced by the set of vertices V; U V; (so
every vertex of Gjj is either colour i or colour j). We claim that v; and v;
are in the same connected component of G,-J-. If not, consider the
component of Gj; that contains v;. By interchanging colours i and j in this
component, we obtain a new 4-colouring of G — v in which only three
colours (all but colour i) are assigned to the neighbors of v. See the figure
below.
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Theorem 15.3 (continued 1)

Proof (continued). But then we could assign colour i to vertex v giving

a 4-colouring of G, contradicting the (assumed) fact that it is not

4-colourable. So our claim that v; and v; are in the same component of

GU hO|dS e component of Gy3
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a (contradictory) 4-colouring of G
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Theorem 15.3 (continued 2)

Proof (continued). Let Pj be a vjvj-path in G and let C denote the
cycle vvq P13v3v (see Figure 15.5).
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Fig. 15.5. Kempe s pIOOf of the case d(v) =4
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Because C separates v and v4 (in the Figure 15.5 we have v, € int(C)
and v4 € ext(C)), then by the Jordan Curve Theorem (Theorem 10.1),
path P»4 meets C in some point.
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Theorem 15.3 (continued 3)

Theorem 15.3. A smallest counterexample G to the Four-Colour
Theorem has no vertex of degree four.

Proof (continued). Because G is a plane graph by hypothesis, this point
must be a vertex of G. But the vertices of path P;3 are all either colour 1
or 3 and vertices of path Py4 are all either colour 2 or 4. The existence of
a vertex on both paths is therefore a CONTRADICTION. So the
assumption that G has a vertex of degree four is false, and hence G has
no vertex of degree four, as claimed. Ol
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Theorem 15.7

Theorem 15.7. The Birkhoff diamond is reducible.
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Theorem 15.7

Theorem 15.7. The Birkhoff diamond is reducible.

Proof. ASSUME G is a smallest conterexample to the Four-Colour
Theorem with the Birkhoff diamond as a configuration. Because G is
essentially 6-connected by Theorem 15.6 then, by Exercise 15.2.3, no edge
of G can join nonconsecutive vertices on the boundary cycle of the Birkhoff
diamond. Consider the plane graph G’ derived from G by deleting the four
internal bridge vertices (vertices uy, ua, us, us in Figure 15.7), identifying
vertices v; and v3 to form a new vertex vy, deleting one of the two
multiple edges between vy and v», and joining vy and vs; see Figure 15.8:

U6
)
i

vy G’
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Theorem 15.7

Theorem 15.7. The Birkhoff diamond is reducible.

Proof. ASSUME G is a smallest conterexample to the Four-Colour
Theorem with the Birkhoff diamond as a configuration. Because G is
essentially 6-connected by Theorem 15.6 then, by Exercise 15.2.3, no edge
of G can join nonconsecutive vertices on the boundary cycle of the Birkhoff
diamond. Consider the plane graph G’ derived from G by deleting the four
internal bridge vertices (vertices uy, ua, us, us in Figure 15.7), identifying
vertices v; and v3 to form a new vertex vy, deleting one of the two
multiple edges between vy and v», and joining vy and vs; see Figure 15.8:
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Theorem 15.7 (continued 1)

Proof (continued). Since no edge of G can join nonconsecutive vertices
on the bounding cycle (in particular, no edge of G bounds v; and v3) then
G’ contains no loops.
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Theorem 15.7 (continued 1)

Proof (continued). Since no edge of G can join nonconsecutive vertices
on the bounding cycle (in particular, no edge of G bounds v; and v3) then
G’ contains no loops.

Because v(G') + e(G’') < v(G)+ e(G) and G is a smallest counterexample
to the Four-Colour Theorem, there exists a 4-colouring ¢’ of G'. The
colouring ¢’ gives rise to a partial 4-colouring of G (in fact, a 4-colouring
of G —{u1, uz, u3,us} since vi and v, are not adjacent in G) in which:

(1) v1 and v3 receive the same colour, say 1,

(2) vs and receives a colour different from 1, say 2,

(3) v receives a colour different fom 1, without loss of
generality, either 2 or 3 (that is, either the same colour as vs
or a different colour from the colour of vs which we take
without loss of generality to be 3; we could also choose v5 to
be colour 4),

(4) v4 and vg each receives a colour different from 1 or 2,
namely either 3 or 4.
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Theorem 15.7

Theorem 15.7 (continued 2)

Proof (continued). We expect 3 x 2 x 2 = 12 different colourings of the
bounding cycle C = viwav3vavsvevi. We can interchange colours 3 and 4,
reducing the number of colourings to five:

Vi Vo V3 V4 Vg Vg
all 2 1 3 2 3
|l 2 1 4 2 3
|1l 3 1 4 2 3
a|ll 3 1 4 2 4
|1 3 1 3 2 3

Interchanging colours 3 and 4 on vertices v4 and vg gives new colourings
from c1, ¢, and c3 (for three more colourings). Replacing colour 3 with

colour 4 on vertex v, gives new colourings from ¢3, ¢4, ¢s (for three more
colourings); then also interchanging colours 3 and 4 on vertices v4 and vg
in the modified colouring of ¢4 gives a new colouring (for a total of

5+ 343+ 1 =12 colourings, as expected).
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Theorem 15.7 (continued 3)

Proof (continued). In colourings ¢; through ¢ it is straightforward to
show that the colouring of G — {u1, u2, u3, us} can be extended to a
colouring of G, as is to be shown in Exercise 15.2.4(a). Consider now the
colouring cs. In this case we will use a Kempe interchange to modify ¢5 to
create a 4-colouring of G — {1, up, u3, us} that can be extended to a
4-colouring of G.
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Theorem 15.7 (continued 3)

Proof (continued). In colourings ¢; through ¢ it is straightforward to
show that the colouring of G — {u1, u2, u3, usa} can be extended to a
colouring of G, as is to be shown in Exercise 15.2.4(a). Consider now the
colouring cs. In this case we will use a Kempe interchange to modify ¢5 to
create a 4-colouring of G — {1, up, u3, us} that can be extended to a
4-colouring of G.

First, consider the bipartite graph Gs4 induced by the vertices coloured 3
or 4. We claim that v», v4, and v (each of colour 3) belong to the same
connected component H of Gz4. Suppose v» is in some component of Gzg,
but neither v4 nor vg are in this component. By swapping the colours 3
and 4 in this component, we obtain a colouring of “type” ¢4 (we need to
then use symmetry and interchange colours 3 and 4 to get colouring cu;
thus the “type” term). The other cases (a component of Gz containing va
but neither v5 nor vg, and a component of Gzg4 containing vg but neither
v nor vy) are addressed in Exercise 15.2.4(b). Therefore we can assume
that vo, v4, and vg belong to the same component H of Gsg, as claimed.

Graph Theory April 18,2023 13 /17



Theorem 15.7 (continued 4)

Theorem 15.7. The Birkhoff diamond is reducible.

Proof (continued). Second, we have that H is an outer bridge of C in G
with vertices of attachment v», v4, and vg (by definition, a bridge is a
connected graph so that's why we are concerned with a component of Gsa;
notice that H cannot be an inner bridge, as seen in Figure 15.7).
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Theorem 15.7 (continued 4)

Theorem 15.7. The Birkhoff diamond is reducible.

Proof (continued). Second, we have that H is an outer bridge of C in G
with vertices of attachment v», v4, and vg (by definition, a bridge is a
connected graph so that's why we are concerned with a component of Gsa;
notice that H cannot be an inner bridge, as seen in Figure 15.7). Next,
consider the bipartite subgraph Gi» of G induced by the vertices of colours
1 and 2. If there were a component of Gio which contained both v3 and
vs, then this component would be an outer bridge of C overlapping H,
which cannot happen (by the Jordan Curve Theorem, Theorem 10.1; see
Figure 15.7). So the component H' of Gj» which contains v3 does not
contain vs. Interchanging colours 1 and 2 in H’, we obtain a new partial
4-colouring of G.
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Theorem 15.7 (continued 5)

Theorem 15.7. The Birkhoff diamond is reducible.

Proof (continued). In this colouring v; has colour 1, v3 and vs have
colour 2, and vertices v», va, v are colour 3 (we have not changed the
original colours of vertices vy, vo, v4, vs, Vg, but we have changed vz from
colour 1 to colour 2). This partial colouring of G can be extended to a
4-colouring of G by assigning colour 2 to uj, colour 4 to up and w4, and
colour 1 to u3. But G is a smallest counterexample to the Four-Colour
Theorem and so G is not 4-colourable, a CONTRADICTION. So the
assumption that a smallest counterexample to the Four-Colour Theorem
has the Birkhoff diamond as a configuration is false. That is (by
definition), the Birkhoff diamond is reducible, as claimed.

O
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Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 < k < 11.
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Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 < k < 11.

Proof. ASSUME the claim is false. Let G be a smallest counterexample
(that is, the sum v(G) + e(G) is as small as possible among all
counterexamples) to eh assertion. Since G is a smallest counterexample, it
does not have a cut vertex (or else we could consider the two subgraphs of
G which are joined at the cut vertex and delete the vertices in the
component with the lesser [or equal] chromatic number from G, except fo
the cut vertex,; the resulting graph is smaller than G and yet has the same
chromatic number as G, contradicting the minimality of G). That is, G is
2-connected.
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Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 < k < 11.

Proof. ASSUME the claim is false. Let G be a smallest counterexample
(that is, the sum v(G) + e(G) is as small as possible among all
counterexamples) to eh assertion. Since G is a smallest counterexample, it
does not have a cut vertex (or else we could consider the two subgraphs of
G which are joined at the cut vertex and delete the vertices in the
component with the lesser [or equal] chromatic number from G, except fo
the cut vertex,; the resulting graph is smaller than G and yet has the same
chromatic number as G, contradicting the minimality of G). That is, G is
2-connected. If §(G) = 2 then G is a cycle and so is 3-colourable,
contradicting the fact that G is a counterexample. Therefore 6(G) > 3.
We assign charges to both vertices and faces based on their degrees. For
v € V assign the charge d(v) — 6 and for face f € F (i.e., f is a face in a
planar embedding of G) assign the charge 2d(v) — 6.
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Theorem 15.2.A (continued)

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 < k < 11.

Proof. In Exercise 15.2.A it is to be verified that the total charge assigned
to vertices and faces is —12. For the discharging algorithm, each face of
degree twelve or more transfers a charge of 3/2 to each of the vertices
incident to the face. Since G is 2-connected, by Theorem 10.7 all faces of
G are bounded by cycles. Because G has no 4-cycles, no edge of G can be
incident with two triangles. Thus each vertex v is incident with at least
[v/2] distinct faces of degree twelve or more (adn at most |d(v)/2]
triangles).
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Theorem 15.2.A (continued)

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 < k < 11.

Proof. In Exercise 15.2.A it is to be verified that the total charge assigned
to vertices and faces is —12. For the discharging algorithm, each face of
degree twelve or more transfers a charge of 3/2 to each of the vertices
incident to the face. Since G is 2-connected, by Theorem 10.7 all faces of
G are bounded by cycles. Because G has no 4-cycles, no edge of G can be
incident with two triangles. Thus each vertex v is incident with at least
[v/2] distinct faces of degree twelve or more (adn at most |d(v)/2]
triangles). In Exercise 15.2.A it is to be shown that after the transfer of
charges, all vertices and faces have nonnegative charges. Set U of
unavoidable configurations is then empty. But the smallest
counterexample must contain at least one element of U/, a
CONTRADICTION. So the assumption that a (smallest) counterexample
exists is false, and the claim holds. O
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