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Theorem 15.2

Theorem 15.2

Proposition 15.2. Let G be a smallest counterexample to the
Four-Colour Theorem. Then

(i) G is 5-critical,

(ii) G is a triangulation, and

(iii) G has no vertex of degree less than four.

Proof. (i) By the definition of 5-critical, if G is not 5-critical then it has a
proper subgraph that is 5-critical, contradicting the minimality of
v(G ) + e(G ) given in Note 15.2.A(ii). So G must be 5-critical.

(ii) ASSUME G is not a triangulation. Then it has a face whose boundary
is a cycle C of length greater than three. Since G is planar, at least two
vertices of C , say x and y , are nonadjacent in G (see the figure below).
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Theorem 15.2

Theorem 15.2 (continued 1)

Proof (continued).

The graph G/{x , y} obtained by identifying x and y into a single vertex z
is a planar graph with fewer vertices than G , and the same number of
edges. Since G is 5-critical by (i), then G/{x , y} is 4-colourable with, say,
colouring c . Now G can be 4-coloured by assigning colour c(v) to each
v ∈ V (G ) \ {x , y} and assigning colour c(z) to vertices x and y . This is a
CONTRADICTION to the (assumed) fact that G is a counterexample to
the Four-Colour Theorem. So the assumption that G is not a triangulation
is false, and hence G is a triangulation, as claimed.
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Theorem 15.2

Theorem 15.2 (continued 2)

Proposition 15.2. Let G be a smallest counterexample to the
Four-Colour Theorem. Then

(i) G is 5-critical,

(ii) G is a triangulation, and

(iii) G has no vertex of degree less than four.

Proof (continued). (iii) Since G is 5-critical by (i), then Theorem 14.7
implies δ ≥ k − 1 = 5− 1 = 4, as claimed.
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Theorem 15.3

Theorem 15.3

Theorem 15.3. A smallest counterexample G to the Four-Colour
Theorem has no vertex of degree four.

Proof. ASSUME G has a vertex v of degree four. Then G − v is a proper
subgraph of G and, since G is 5-critical by Proposition 15.2(i), then G − v
is 4-colourable. Let the colour classes of a 4-colouring of G − v be
(V1,V2,V3,V4). Because G itself is not 4-colourable, then v must be
adjacent to one vertex of each colour. Without loss of generality, we may
assume that the neighbors of v in clockwise order (so we can draw a
picture) are v1, v2, v3, v4 where vi ∈ Vi for 1 ≤ i ≤ 4.

Denote by Gij the subgraph of G induced by the set of vertices Vi ∪ Vj (so
every vertex of Gij is either colour i or colour j). We claim that vi and vj

are in the same connected component of Gij . If not, consider the
component of Gij that contains vi . By interchanging colours i and j in this
component, we obtain a new 4-colouring of G − v in which only three
colours (all but colour i) are assigned to the neighbors of v . See the figure
below.
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Theorem 15.3

Theorem 15.3 (continued 1)

Proof (continued). But then we could assign colour i to vertex v giving
a 4-colouring of G , contradicting the (assumed) fact that it is not
4-colourable. So our claim that vi and vj are in the same component of
Gij holds.
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Theorem 15.3

Theorem 15.3 (continued 2)

Proof (continued). Let Pij be a vivj -path in Gij and let C denote the
cycle vv1P13v3v (see Figure 15.5).

Because C separates v2 and v4 (in the Figure 15.5 we have v2 ∈ int(C )
and v4 ∈ ext(C )), then by the Jordan Curve Theorem (Theorem 10.1),
path P24 meets C in some point.
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Theorem 15.3

Theorem 15.3 (continued 3)

Theorem 15.3. A smallest counterexample G to the Four-Colour
Theorem has no vertex of degree four.

Proof (continued). Because G is a plane graph by hypothesis, this point
must be a vertex of G . But the vertices of path P13 are all either colour 1
or 3 and vertices of path P24 are all either colour 2 or 4. The existence of
a vertex on both paths is therefore a CONTRADICTION. So the
assumption that G has a vertex of degree four is false, and hence G has
no vertex of degree four, as claimed.
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Theorem 15.7

Theorem 15.7

Theorem 15.7. The Birkhoff diamond is reducible.

Proof. ASSUME G is a smallest conterexample to the Four-Colour
Theorem with the Birkhoff diamond as a configuration. Because G is
essentially 6-connected by Theorem 15.6 then, by Exercise 15.2.3, no edge
of G can join nonconsecutive vertices on the boundary cycle of the Birkhoff
diamond. Consider the plane graph G ′ derived from G by deleting the four
internal bridge vertices (vertices u1, u2, u3, u4 in Figure 15.7), identifying
vertices v1 and v3 to form a new vertex v0, deleting one of the two
multiple edges between v0 and v2, and joining v0 and v5; see Figure 15.8:
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Theorem 15.7

Theorem 15.7 (continued 1)

Proof (continued). Since no edge of G can join nonconsecutive vertices
on the bounding cycle (in particular, no edge of G bounds v1 and v3) then
G ′ contains no loops.

Because v(G ′) + e(G ′) < v(G ) + e(G ) and G is a smallest counterexample
to the Four-Colour Theorem, there exists a 4-colouring c ′ of G ′. The
colouring c ′ gives rise to a partial 4-colouring of G (in fact, a 4-colouring
of G − {u1, u2, u3, u4} since v1 and v2 are not adjacent in G ) in which:

(1) v1 and v3 receive the same colour, say 1,
(2) v5 and receives a colour different from 1, say 2,
(3) v3 receives a colour different fom 1, without loss of

generality, either 2 or 3 (that is, either the same colour as v5

or a different colour from the colour of v5 which we take
without loss of generality to be 3; we could also choose v5 to
be colour 4),

(4) v4 and v6 each receives a colour different from 1 or 2,
namely either 3 or 4.
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Theorem 15.7

Theorem 15.7 (continued 2)

Proof (continued). We expect 3× 2× 2 = 12 different colourings of the
bounding cycle C = v1v2v3v4v5v6v1. We can interchange colours 3 and 4,
reducing the number of colourings to five:

v1 v2 v3 v4 v5 v6

c1 1 2 1 3 2 3
c2 1 2 1 4 2 3
c3 1 3 1 4 2 3
c4 1 3 1 4 2 4
c5 1 3 1 3 2 3

Interchanging colours 3 and 4 on vertices v4 and v6 gives new colourings
from c1, c2, and c3 (for three more colourings). Replacing colour 3 with
colour 4 on vertex v2 gives new colourings from c3, c4, c5 (for three more
colourings); then also interchanging colours 3 and 4 on vertices v4 and v6

in the modified colouring of c4 gives a new colouring (for a total of
5 + 3 + 3 + 1 = 12 colourings, as expected).
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Theorem 15.7

Theorem 15.7 (continued 3)

Proof (continued). In colourings c1 through c4 it is straightforward to
show that the colouring of G − {u1, u2, u3, u4} can be extended to a
colouring of G , as is to be shown in Exercise 15.2.4(a). Consider now the
colouring c5. In this case we will use a Kempe interchange to modify c5 to
create a 4-colouring of G − {u1, u2, u3, u4} that can be extended to a
4-colouring of G .

First, consider the bipartite graph G34 induced by the vertices coloured 3
or 4. We claim that v2, v4, and v6 (each of colour 3) belong to the same
connected component H of G34. Suppose v2 is in some component of G34,
but neither v4 nor v6 are in this component. By swapping the colours 3
and 4 in this component, we obtain a colouring of “type” c4 (we need to
then use symmetry and interchange colours 3 and 4 to get colouring c4;
thus the “type” term). The other cases (a component of G34 containing v4

but neither v5 nor v6, and a component of G34 containing v6 but neither
v2 nor v4) are addressed in Exercise 15.2.4(b). Therefore we can assume
that v2, v4, and v6 belong to the same component H of G34, as claimed.
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Theorem 15.7

Theorem 15.7 (continued 4)

Theorem 15.7. The Birkhoff diamond is reducible.

Proof (continued). Second, we have that H is an outer bridge of C in G
with vertices of attachment v2, v4, and v6 (by definition, a bridge is a
connected graph so that’s why we are concerned with a component of G34;
notice that H cannot be an inner bridge, as seen in Figure 15.7). Next,
consider the bipartite subgraph G12 of G induced by the vertices of colours
1 and 2. If there were a component of G12 which contained both v3 and
v5, then this component would be an outer bridge of C overlapping H,
which cannot happen (by the Jordan Curve Theorem, Theorem 10.1; see
Figure 15.7). So the component H ′ of G12 which contains v3 does not
contain v5. Interchanging colours 1 and 2 in H ′, we obtain a new partial
4-colouring of G .
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Theorem 15.7

Theorem 15.7 (continued 5)

Theorem 15.7. The Birkhoff diamond is reducible.

Proof (continued). In this colouring v1 has colour 1, v3 and v5 have
colour 2, and vertices v2, v4, v6 are colour 3 (we have not changed the
original colours of vertices v1, v2, v4, v5, v6, but we have changed v3 from
colour 1 to colour 2). This partial colouring of G can be extended to a
4-colouring of G by assigning colour 2 to u1, colour 4 to u2 and u4, and
colour 1 to u3. But G is a smallest counterexample to the Four-Colour
Theorem and so G is not 4-colourable, a CONTRADICTION. So the
assumption that a smallest counterexample to the Four-Colour Theorem
has the Birkhoff diamond as a configuration is false. That is (by
definition), the Birkhoff diamond is reducible, as claimed.
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Theorem 15.2.A

Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 ≤ k ≤ 11.

Proof. ASSUME the claim is false. Let G be a smallest counterexample
(that is, the sum v(G ) + e(G ) is as small as possible among all
counterexamples) to eh assertion. Since G is a smallest counterexample, it
does not have a cut vertex (or else we could consider the two subgraphs of
G which are joined at the cut vertex and delete the vertices in the
component with the lesser [or equal] chromatic number from G , except fo
the cut vertex,; the resulting graph is smaller than G and yet has the same
chromatic number as G , contradicting the minimality of G ). That is, G is
2-connected.

If δ(G ) = 2 then G is a cycle and so is 3-colourable,
contradicting the fact that G is a counterexample. Therefore δ(G ) ≥ 3.
We assign charges to both vertices and faces based on their degrees. For
v ∈ V assign the charge d(v)− 6 and for face f ∈ F (i.e., f is a face in a
planar embedding of G ) assign the charge 2d(v)− 6.

() Graph Theory April 18, 2023 16 / 17



Theorem 15.2.A

Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 ≤ k ≤ 11.

Proof. ASSUME the claim is false. Let G be a smallest counterexample
(that is, the sum v(G ) + e(G ) is as small as possible among all
counterexamples) to eh assertion. Since G is a smallest counterexample, it
does not have a cut vertex (or else we could consider the two subgraphs of
G which are joined at the cut vertex and delete the vertices in the
component with the lesser [or equal] chromatic number from G , except fo
the cut vertex,; the resulting graph is smaller than G and yet has the same
chromatic number as G , contradicting the minimality of G ). That is, G is
2-connected. If δ(G ) = 2 then G is a cycle and so is 3-colourable,
contradicting the fact that G is a counterexample. Therefore δ(G ) ≥ 3.
We assign charges to both vertices and faces based on their degrees. For
v ∈ V assign the charge d(v)− 6 and for face f ∈ F (i.e., f is a face in a
planar embedding of G ) assign the charge 2d(v)− 6.

() Graph Theory April 18, 2023 16 / 17



Theorem 15.2.A

Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 ≤ k ≤ 11.

Proof. ASSUME the claim is false. Let G be a smallest counterexample
(that is, the sum v(G ) + e(G ) is as small as possible among all
counterexamples) to eh assertion. Since G is a smallest counterexample, it
does not have a cut vertex (or else we could consider the two subgraphs of
G which are joined at the cut vertex and delete the vertices in the
component with the lesser [or equal] chromatic number from G , except fo
the cut vertex,; the resulting graph is smaller than G and yet has the same
chromatic number as G , contradicting the minimality of G ). That is, G is
2-connected. If δ(G ) = 2 then G is a cycle and so is 3-colourable,
contradicting the fact that G is a counterexample. Therefore δ(G ) ≥ 3.
We assign charges to both vertices and faces based on their degrees. For
v ∈ V assign the charge d(v)− 6 and for face f ∈ F (i.e., f is a face in a
planar embedding of G ) assign the charge 2d(v)− 6.

() Graph Theory April 18, 2023 16 / 17



Theorem 15.2.A

Theorem 15.2.A (continued)

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of
length k for 4 ≤ k ≤ 11.

Proof. In Exercise 15.2.A it is to be verified that the total charge assigned
to vertices and faces is −12. For the discharging algorithm, each face of
degree twelve or more transfers a charge of 3/2 to each of the vertices
incident to the face. Since G is 2-connected, by Theorem 10.7 all faces of
G are bounded by cycles. Because G has no 4-cycles, no edge of G can be
incident with two triangles. Thus each vertex v is incident with at least
dv/2e distinct faces of degree twelve or more (adn at most bd(v)/2c
triangles). In Exercise 15.2.A it is to be shown that after the transfer of
charges, all vertices and faces have nonnegative charges. Set U of
unavoidable configurations is then empty. But the smallest
counterexample must contain at least one element of U , a
CONTRADICTION. So the assumption that a (smallest) counterexample
exists is false, and the claim holds.
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