Graph Theory

Chapter 15. Colourings of Maps

15.2. The Four-Colour Theorem—Proofs of Theorems

Table of contents

(1) Theorem 15.2
(2) Theorem 15.3
(3) Theorem 15.7
(4) Theorem 15.2.A

Theorem 15.2

Proposition 15.2. Let G be a smallest counterexample to the Four-Colour Theorem. Then
(i) G is 5-critical,
(ii) G is a triangulation, and
(iii) G has no vertex of degree less than four.

Proof. (i) By the definition of 5-critical, if G is not 5-critical then it has a proper subgraph that is 5-critical, contradicting the minimality of $v(G)+e(G)$ given in Note 15.2.A(ii). So G must be 5-critical.

Theorem 15.2

Proposition 15.2. Let G be a smallest counterexample to the Four-Colour Theorem. Then
(i) G is 5-critical,
(ii) G is a triangulation, and
(iii) G has no vertex of degree less than four.

Proof. (i) By the definition of 5 -critical, if G is not 5-critical then it has a proper subgraph that is 5-critical, contradicting the minimality of $v(G)+e(G)$ given in Note 15.2.A(ii). So G must be 5-critical.
(ii) ASSUME G is not a triangulation. Then it has a face whose boundary is a cycle C of length greater than three. Since G is planar, at least two vertices of C, say x and y, are nonadjacent in G (see the figure below).

Theorem 15.2

Proposition 15.2. Let G be a smallest counterexample to the Four-Colour Theorem. Then
(i) G is 5-critical,
(ii) G is a triangulation, and
(iii) G has no vertex of degree less than four.

Proof. (i) By the definition of 5 -critical, if G is not 5-critical then it has a proper subgraph that is 5-critical, contradicting the minimality of $v(G)+e(G)$ given in Note 15.2.A(ii). So G must be 5 -critical.
(ii) ASSUME G is not a triangulation. Then it has a face whose boundary is a cycle C of length greater than three. Since G is planar, at least two vertices of C, say x and y, are nonadjacent in G (see the figure below).

Theorem 15.2 (continued 1)

Proof (continued).

$G /\{x, y\}$

The graph $G /\{x, y\}$ obtained by identifying x and y into a single vertex z is a planar graph with fewer vertices than G, and the same number of edges. Since G is 5 -critical by (i), then $G /\{x, y\}$ is 4-colourable with, say, colouring c. Now G can be 4-coloured by assigning colour $c(v)$ to each $v \in V(G) \backslash\{x, y\}$ and assigning colour $c(z)$ to vertices x and y. This is a CONTRADICTION to the (assumed) fact that G is a counterexample to the Four-Colour Theorem. So the assumption that G is not a triangulation is false, and hence G is a triangulation, as claimed.

Theorem 15.2 (continued 2)

Proposition 15.2. Let G be a smallest counterexample to the Four-Colour Theorem. Then
(i) G is 5-critical,
(ii) G is a triangulation, and
(iii) G has no vertex of degree less than four.

Proof (continued). (iii) Since G is 5 -critical by (i), then Theorem 14.7 implies $\delta \geq k-1=5-1=4$, as claimed.

Theorem 15.3

Theorem 15.3. A smallest counterexample G to the Four-Colour Theorem has no vertex of degree four.
Proof. ASSUME G has a vertex v of degree four. Then $G-v$ is a proper subgraph of G and, since G is 5-critical by Proposition 15.2(i), then $G-v$ is 4-colourable. Let the colour classes of a 4-colouring of $G-v$ be $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$. Because G itself is not 4-colourable, then v must be adjacent to one vertex of each colour. Without loss of generality, we may assume that the neighbors of v in clockwise order (so we can draw a picture) are $v_{1}, v_{2}, v_{3}, v_{4}$ where $v_{i} \in V_{i}$ for $1 \leq i \leq 4$.

Theorem 15.3

Theorem 15.3. A smallest counterexample G to the Four-Colour Theorem has no vertex of degree four.
Proof. ASSUME G has a vertex v of degree four. Then $G-v$ is a proper subgraph of G and, since G is 5-critical by Proposition 15.2(i), then $G-v$ is 4-colourable. Let the colour classes of a 4-colouring of $G-v$ be $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$. Because G itself is not 4-colourable, then v must be adjacent to one vertex of each colour. Without loss of generality, we may assume that the neighbors of v in clockwise order (so we can draw a picture) are $v_{1}, v_{2}, v_{3}, v_{4}$ where $v_{i} \in V_{i}$ for $1 \leq i \leq 4$.
Denote by $G_{i j}$ the subgraph of G induced by the set of vertices $V_{i} \cup V_{j}$ (so every vertex of $G_{i j}$ is either colour i or colour j). We claim that v_{i} and v_{j} are in the same connected component of $G_{i j}$. If not, consider the component of $G_{i j}$ that contains v_{i}. By interchanging colours i and j in this component, we obtain a new 4-colouring of $G-v$ in which only three colours (all but colour i) are assigned to the neighbors of v. See the figure below.

Theorem 15.3

Theorem 15.3. A smallest counterexample G to the Four-Colour Theorem has no vertex of degree four.
Proof. ASSUME G has a vertex v of degree four. Then $G-v$ is a proper subgraph of G and, since G is 5-critical by Proposition 15.2(i), then $G-v$ is 4-colourable. Let the colour classes of a 4-colouring of $G-v$ be $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$. Because G itself is not 4-colourable, then v must be adjacent to one vertex of each colour. Without loss of generality, we may assume that the neighbors of v in clockwise order (so we can draw a picture) are $v_{1}, v_{2}, v_{3}, v_{4}$ where $v_{i} \in V_{i}$ for $1 \leq i \leq 4$.
Denote by $G_{i j}$ the subgraph of G induced by the set of vertices $V_{i} \cup V_{j}$ (so every vertex of $G_{i j}$ is either colour i or colour j). We claim that v_{i} and v_{j} are in the same connected component of $G_{i j}$. If not, consider the component of $G_{i j}$ that contains v_{i}. By interchanging colours i and j in this component, we obtain a new 4-colouring of $G-v$ in which only three colours (all but colour i) are assigned to the neighbors of v. See the figure below.

Theorem 15.3 (continued 1)

Proof (continued). But then we could assign colour i to vertex v giving a 4-colouring of G, contradicting the (assumed) fact that it is not 4-colourable. So our claim that v_{i} and v_{i} are in the same component of $G_{i j}$ holds.

v_{1} and v_{3} in different components of G_{13}

```
interchange colours 1 and 3 in the
```

component of G_{13} containing v_{1}

a (contradictory) 4-colouring of G

Theorem 15.3 (continued 2)

Proof (continued). Let $P_{i j}$ be a $v_{i} v_{j}$-path in $G_{i j}$ and let C denote the cycle $v v_{1} P_{13} v_{3} v$ (see Figure 15.5).

Fig. 15.5. Kempe's proof of the case $d(v)=4$
Because C separates v_{2} and v_{4} (in the Figure 15.5 we have $v_{2} \in \operatorname{int}(C)$ and $v_{4} \in \operatorname{ext}(C)$), then by the Jordan Curve Theorem (Theorem 10.1), path P_{24} meets C in some point.

Theorem 15.3 (continued 3)

Theorem 15.3. A smallest counterexample G to the Four-Colour Theorem has no vertex of degree four.

Proof (continued). Because G is a plane graph by hypothesis, this point must be a vertex of G. But the vertices of path P_{13} are all either colour 1 or 3 and vertices of path P_{24} are all either colour 2 or 4 . The existence of a vertex on both paths is therefore a CONTRADICTION. So the assumption that G has a vertex of degree four is false, and hence G has no vertex of degree four, as claimed.

Theorem 15.7

Theorem 15.7. The Birkhoff diamond is reducible.
Proof. ASSUME G is a smallest conterexample to the Four-Colour Theorem with the Birkhoff diamond as a configuration. Because G is essentially 6 -connected by Theorem 15.6 then, by Exercise 15.2.3, no edge of G can join nonconsecutive vertices on the boundary cycle of the Birkhoff diamond. Consider the plane graph G^{\prime} derived from G by deleting the four internal bridge vertices (vertices $u_{1}, u_{2}, u_{3}, u_{4}$ in Figure 15.7), identifying vertices v_{1} and v_{3} to form a new vertex v_{0}, deleting one of the two multiple edges between v_{0} and v_{2}, and joining v_{0} and v_{5}; see Figure 15.8:

Theorem 15.7

Theorem 15.7. The Birkhoff diamond is reducible.
Proof. ASSUME G is a smallest conterexample to the Four-Colour Theorem with the Birkhoff diamond as a configuration. Because G is essentially 6 -connected by Theorem 15.6 then, by Exercise 15.2.3, no edge of G can join nonconsecutive vertices on the boundary cycle of the Birkhoff diamond. Consider the plane graph G^{\prime} derived from G by deleting the four internal bridge vertices (vertices $u_{1}, u_{2}, u_{3}, u_{4}$ in Figure 15.7), identifying vertices v_{1} and v_{3} to form a new vertex v_{0}, deleting one of the two multiple edges between v_{0} and v_{2}, and joining v_{0} and v_{5}; see Figure 15.8:

Theorem 15.7

Theorem 15.7. The Birkhoff diamond is reducible.
Proof. ASSUME G is a smallest conterexample to the Four-Colour Theorem with the Birkhoff diamond as a configuration. Because G is essentially 6 -connected by Theorem 15.6 then, by Exercise 15.2.3, no edge of G can join nonconsecutive vertices on the boundary cycle of the Birkhoff diamond. Consider the plane graph G^{\prime} derived from G by deleting the four internal bridge vertices (vertices $u_{1}, u_{2}, u_{3}, u_{4}$ in Figure 15.7), identifying vertices v_{1} and v_{3} to form a new vertex v_{0}, deleting one of the two multiple edges between v_{0} and v_{2}, and joining v_{0} and v_{5}; see Figure 15.8:

Theorem 15.7 (continued 1)

Proof (continued). Since no edge of G can join nonconsecutive vertices on the bounding cycle (in particular, no edge of G bounds v_{1} and v_{3}) then G^{\prime} contains no loops.

Because $v\left(G^{\prime}\right)+e\left(G^{\prime}\right)<v(G)+e(G)$ and G is a smallest counterexample to the Four-Colour Theorem, there exists a 4-colouring c^{\prime} of G^{\prime}. The colouring c^{\prime} gives rise to a partial 4 -colouring of G (in fact, a 4 -colouring of $G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ since v_{1} and v_{2} are not adjacent in $\left.G\right)$ in which:
(1) v_{1} and v_{3} receive the same colour, say 1 ,
(2) v_{5} and receives a colour different from 1 , say 2 ,
(3) v_{3} receives a colour different fom 1 , without loss of generality, either 2 or 3 (that is, either the same colour as v_{5} or a different colour from the colour of v_{5} which we take without loss of generality to be 3 ; we could also choose v_{5} to be colour 4),
(4) v_{4} and v_{6} each receives a colour different from 1 or 2, namely either 3 or 4 .

Theorem 15.7 (continued 1)

Proof (continued). Since no edge of G can join nonconsecutive vertices on the bounding cycle (in particular, no edge of G bounds v_{1} and v_{3}) then G^{\prime} contains no loops.

Because $v\left(G^{\prime}\right)+e\left(G^{\prime}\right)<v(G)+e(G)$ and G is a smallest counterexample to the Four-Colour Theorem, there exists a 4-colouring c^{\prime} of G^{\prime}. The colouring c^{\prime} gives rise to a partial 4-colouring of G (in fact, a 4-colouring of $G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ since v_{1} and v_{2} are not adjacent in $\left.G\right)$ in which:
(1) v_{1} and v_{3} receive the same colour, say 1 ,
(2) v_{5} and receives a colour different from 1 , say 2 ,
(3) v_{3} receives a colour different fom 1 , without loss of generality, either 2 or 3 (that is, either the same colour as v_{5} or a different colour from the colour of v_{5} which we take without loss of generality to be 3 ; we could also choose v_{5} to be colour 4),
(4) v_{4} and v_{6} each receives a colour different from 1 or 2, namely either 3 or 4 .

Theorem 15.7 (continued 2)

Proof (continued). We expect $3 \times 2 \times 2=12$ different colourings of the bounding cycle $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$. We can interchange colours 3 and 4 , reducing the number of colourings to five:

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
c_{1}	1	2	1	3	2	3
c_{2}	1	2	1	4	2	3
c_{3}	1	3	1	4	2	3
c_{4}	1	3	1	4	2	4
c_{5}	1	3	1	3	2	3

Interchanging colours 3 and 4 on vertices v_{4} and v_{6} gives new colourings from c_{1}, c_{2}, and c_{3} (for three more colourings). Replacing colour 3 with colour 4 on vertex v_{2} gives new colourings from c_{3}, c_{4}, c_{5} (for three more colourings); then also interchanging colours 3 and 4 on vertices v_{4} and v_{6} in the modified colouring of c_{4} gives a new colouring (for a total of $5+3+3+1=12$ colourings, as expected).

Theorem 15.7 (continued 3)

Proof (continued). In colourings c_{1} through c_{4} it is straightforward to show that the colouring of $G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ can be extended to a colouring of G, as is to be shown in Exercise 15.2.4(a). Consider now the colouring C_{5}. In this case we will use a Kempe interchange to modify C_{5} to create a 4-colouring of $G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ that can be extended to a 4-colouring of G.

First, consider the bipartite graph G_{34} induced by the vertices coloured 3 or 4 . We claim that v_{2}, v_{4}, and v_{6} (each of colour 3) belong to the same connected component H of G_{34}. Suppose v_{2} is in some component of G_{34}, but neither v_{4} nor v_{6} are in this component. By swapping the colours 3 and 4 in this component, we obtain a colouring of "type" c_{4} (we need to then use symmetry and interchange colours 3 and 4 to get colouring c_{4}; thus the "type" term). The other cases (a component of G_{34} containing v_{4} but neither v_{5} nor v_{6}, and a component of G_{34} containing v_{6} but neither v_{2} nor v_{4}) are addressed in Exercise 15.2.4(b). Therefore we can assume that v_{2}, v_{4}, and v_{6} belong to the same component H of G_{34}, as claimed.

Theorem 15.7 (continued 3)

Proof (continued). In colourings c_{1} through c_{4} it is straightforward to show that the colouring of $G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ can be extended to a colouring of G, as is to be shown in Exercise 15.2.4(a). Consider now the colouring C_{5}. In this case we will use a Kempe interchange to modify C_{5} to create a 4-colouring of $G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ that can be extended to a 4-colouring of G.

First, consider the bipartite graph G_{34} induced by the vertices coloured 3 or 4 . We claim that v_{2}, v_{4}, and v_{6} (each of colour 3) belong to the same connected component H of G_{34}. Suppose v_{2} is in some component of G_{34}, but neither v_{4} nor v_{6} are in this component. By swapping the colours 3 and 4 in this component, we obtain a colouring of "type" c_{4} (we need to then use symmetry and interchange colours 3 and 4 to get colouring c_{4}; thus the "type" term). The other cases (a component of G_{34} containing v_{4} but neither v_{5} nor v_{6}, and a component of G_{34} containing v_{6} but neither v_{2} nor v_{4}) are addressed in Exercise 15.2.4(b). Therefore we can assume that v_{2}, v_{4}, and v_{6} belong to the same component H of G_{34}, as claimed.

Theorem 15.7 (continued 4)

Theorem 15.7. The Birkhoff diamond is reducible.

Proof (continued). Second, we have that H is an outer bridge of C in G with vertices of attachment v_{2}, v_{4}, and v_{6} (by definition, a bridge is a connected graph so that's why we are concerned with a component of G_{34}; notice that H cannot be an inner bridge, as seen in Figure 15.7). Next, consider the bipartite subgraph G_{12} of G induced by the vertices of colours 1 and 2. If there were a component of G_{12} which contained both v_{3} and v_{5}, then this component would be an outer bridge of C overlapping H, which cannot happen (by the Jordan Curve Theorem, Theorem 10.1; see Figure 15.7). So the component H^{\prime} of G_{12} which contains v_{3} does not contain v_{5}. Interchanging colours 1 and 2 in H^{\prime}, we obtain a new partial 4-colouring of G.

Theorem 15.7 (continued 4)

Theorem 15.7. The Birkhoff diamond is reducible.

Proof (continued). Second, we have that H is an outer bridge of C in G with vertices of attachment v_{2}, v_{4}, and v_{6} (by definition, a bridge is a connected graph so that's why we are concerned with a component of G_{34}; notice that H cannot be an inner bridge, as seen in Figure 15.7). Next, consider the bipartite subgraph G_{12} of G induced by the vertices of colours 1 and 2 . If there were a component of G_{12} which contained both v_{3} and v_{5}, then this component would be an outer bridge of C overlapping H, which cannot happen (by the Jordan Curve Theorem, Theorem 10.1; see Figure 15.7). So the component H^{\prime} of G_{12} which contains v_{3} does not contain v_{5}. Interchanging colours 1 and 2 in H^{\prime}, we obtain a new partial 4-colouring of G.

Theorem 15.7 (continued 5)

Theorem 15.7. The Birkhoff diamond is reducible.

Proof (continued). In this colouring v_{1} has colour $1, v_{3}$ and v_{5} have colour 2, and vertices v_{2}, v_{4}, v_{6} are colour 3 (we have not changed the original colours of vertices $v_{1}, v_{2}, v_{4}, v_{5}, v_{6}$, but we have changed v_{3} from colour 1 to colour 2). This partial colouring of G can be extended to a 4-colouring of G by assigning colour 2 to u_{1}, colour 4 to u_{2} and u_{4}, and colour 1 to u_{3}. But G is a smallest counterexample to the Four-Colour Theorem and so G is not 4-colourable, a CONTRADICTION. So the assumption that a smallest counterexample to the Four-Colour Theorem has the Birkhoff diamond as a configuration is false. That is (by definition), the Birkhoff diamond is reducible, as claimed.

Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3 -colourable if it contains no cycles of length k for $4 \leq k \leq 11$.

Proof. ASSUME the claim is false. Let G be a smallest counterexample (that is, the sum $v(G)+e(G)$ is as small as possible among all counterexamples) to eh assertion. Since G is a smallest counterexample, it does not have a cut vertex (or else we could consider the two subgraphs of G which are joined at the cut vertex and delete the vertices in the component with the lesser [or equal] chromatic number from G, except fo the cut vertex,; the resulting graph is smaller than G and yet has the same chromatic number as G, contradicting the minimality of G). That is, G is 2-connected.

Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3 -colourable if it contains no cycles of length k for $4 \leq k \leq 11$.

Proof. ASSUME the claim is false. Let G be a smallest counterexample (that is, the sum $v(G)+e(G)$ is as small as possible among all counterexamples) to eh assertion. Since G is a smallest counterexample, it does not have a cut vertex (or else we could consider the two subgraphs of G which are joined at the cut vertex and delete the vertices in the component with the lesser [or equal] chromatic number from G, except fo the cut vertex,; the resulting graph is smaller than G and yet has the same chromatic number as G, contradicting the minimality of G). That is, G is 2 -connected. If $\delta(G)=2$ then G is a cycle and so is 3-colourable,
contradicting the fact that G is a counterexample. Therefore $\delta(G) \geq 3$. We assign charges to both vertices and faces based on their degrees. For $v \in V$ assign the charge $d(v)-6$ and for face $f \in F$ (i.e., f is a face in a planar embedding of G) assign the charge $2 d(v)-6$.

Theorem 15.2.A

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of length k for $4 \leq k \leq 11$.

Proof. ASSUME the claim is false. Let G be a smallest counterexample (that is, the sum $v(G)+e(G)$ is as small as possible among all counterexamples) to eh assertion. Since G is a smallest counterexample, it does not have a cut vertex (or else we could consider the two subgraphs of G which are joined at the cut vertex and delete the vertices in the component with the lesser [or equal] chromatic number from G, except fo the cut vertex,; the resulting graph is smaller than G and yet has the same chromatic number as G, contradicting the minimality of G). That is, G is 2 -connected. If $\delta(G)=2$ then G is a cycle and so is 3-colourable, contradicting the fact that G is a counterexample. Therefore $\delta(G) \geq 3$. We assign charges to both vertices and faces based on their degrees. For $v \in V$ assign the charge $d(v)-6$ and for face $f \in F$ (i.e., f is a face in a planar embedding of G) assign the charge $2 d(v)-6$.

Theorem 15.2.A (continued)

Theorem 15.2.A. A planar graph is 3-colourable if it contains no cycles of length k for $4 \leq k \leq 11$.

Proof. In Exercise 15.2.A it is to be verified that the total charge assigned to vertices and faces is -12 . For the discharging algorithm, each face of degree twelve or more transfers a charge of $3 / 2$ to each of the vertices incident to the face. Since G is 2-connected, by Theorem 10.7 all faces of G are bounded by cycles. Because G has no 4-cycles, no edge of G can be incident with two triangles. Thus each vertex v is incident with at least $\lceil v / 2\rceil$ distinct faces of degree twelve or more (adn at most $\lfloor d(v) / 2\rfloor$ triangles). In Exercise 15.2.A it is to be shown that after the transfer of charges, all vertices and faces have nonnegative charges. Set \mathcal{U} of unavoidable configurations is then empty. But the smallest counterexample must contain at least one element of \mathcal{U}, a CONTRADICTION. So the assumption that a (smallest) counterexample exists is false, and the claim holds.

Theorem 15.2.A (continued)

Theorem 15.2.A. A planar graph is 3 -colourable if it contains no cycles of length k for $4 \leq k \leq 11$.

Proof. In Exercise 15.2.A it is to be verified that the total charge assigned to vertices and faces is -12 . For the discharging algorithm, each face of degree twelve or more transfers a charge of $3 / 2$ to each of the vertices incident to the face. Since G is 2-connected, by Theorem 10.7 all faces of G are bounded by cycles. Because G has no 4 -cycles, no edge of G can be incident with two triangles. Thus each vertex v is incident with at least $\lceil v / 2\rceil$ distinct faces of degree twelve or more (adn at most $\lfloor d(v) / 2\rfloor$ triangles). In Exercise 15.2.A it is to be shown that after the transfer of charges, all vertices and faces have nonnegative charges. Set \mathcal{U} of unavoidable configurations is then empty. But the smallest counterexample must contain at least one element of \mathcal{U}, a CONTRADICTION. So the assumption that a (smallest) counterexample exists is false, and the claim holds.

