Graph Theory

Chapter 15. Colourings of Maps

15.3. List Colourings of Planar Graphs—Proofs of Theorems

Table of contents

(1) Theorem 15.3.8

Theorem 15.3.8

Theorem 15.3.8. Let G be a near-triangulation whose outer face is bounded by a cycle of C, and let x and y be consecutive vertices of C. Suppose that $L: V \rightarrow 2^{\mathbb{N}}$ (where $2^{\mathbb{N}}$ denotes the power set of \mathbb{N}) is an assignment of lists of colours to the vertices of G such that:
(i) $|L(x)|=|L(y)|=1$, where $L(x) \neq L(y)$,
(ii) $|L(v)| \geq 3$ for all $v \in V(C) \backslash\{x, y\}$, and
(iii) $|L(v)| \geq 5$ for all $v \in V(G) \backslash V(C)$.

Then G is L-colourable.
Proof. We give an inductive proof on the number $v(G)$ of vertices of G (notice that because of the triangulation condition, $v(G) \geq 3$). For the base case $v(G)=3$, we have $G=C$ and the result holds trivially. For the induction hypothesis, suppose the result holds for all graphs G satisfying the hypotheses such that $3 \leq v(G) \leq \ell$. Suppose G is a graph satisfying the hypotheses where $v(G)=\ell+1$ (so $v(G)>3)$. Let z and x^{\prime} be the immediate predecessors of x on C (see Figure 15.12(a) below).

Theorem 15.3.8

Theorem 15.3.8. Let G be a near-triangulation whose outer face is bounded by a cycle of C, and let x and y be consecutive vertices of C. Suppose that $L: V \rightarrow 2^{\mathbb{N}}$ (where $2^{\mathbb{N}}$ denotes the power set of \mathbb{N}) is an assignment of lists of colours to the vertices of G such that:
(i) $|L(x)|=|L(y)|=1$, where $L(x) \neq L(y)$,
(ii) $|L(v)| \geq 3$ for all $v \in V(C) \backslash\{x, y\}$, and
(iii) $|L(v)| \geq 5$ for all $v \in V(G) \backslash V(C)$.

Then G is L-colourable.
Proof. We give an inductive proof on the number $v(G)$ of vertices of G (notice that because of the triangulation condition, $v(G) \geq 3$). For the base case $v(G)=3$, we have $G=C$ and the result holds trivially. For the induction hypothesis, suppose the result holds for all graphs G satisfying the hypotheses such that $3 \leq v(G) \leq \ell$. Suppose G is a graph satisfying the hypotheses where $v(G)=\ell+1$ (so $v(G)>3$). Let z and x^{\prime} be the immediate predecessors of x on C (see Figure 15.12(a) below).

Theorem 15.3.8 (continued 1)

Proof (continued).

Consider first the case where x^{\prime} has a neighbor y^{\prime} on C other than x and z (Figure 15.12(a)). In this case $C_{1}=x^{\prime} C y^{\prime} x^{\prime}$ and $C_{2}=x^{\prime} y^{\prime} C x^{\prime}$ are two cycles of G, and G is the union of the near-triangulation G_{1} consisting of C_{1} together with its interior, and the neartriangulation G_{2} consisting of C_{2} together with its interior. Now let L_{2} be the functions on $V\left(G_{2}\right)$ defined by $L_{2}\left(x^{\prime}\right)=\left\{c_{1}\left(x^{\prime}\right)\right\}, L_{2}\left(y^{\prime}\right)=\left\{c_{1}\left(y^{\prime}\right)\right\}$, and $L_{2}(v)=L(v)$ for $v \in V\left(G_{2}\right) \backslash\left\{x^{\prime}, y^{\prime}\right\}$

Fig. 15.12. (a)

Then the hypotheses of the theorem are satisfied by G_{2} and L_{2} (where x^{\prime} and y^{\prime} of G_{2} play the roles of x and y, respectively, in the hypotheses).

Theorem 15.3.8 (continued 1)

Proof (continued).

Consider first the case where x^{\prime} has
a neighbor y^{\prime} on C other than x and z (Figure 15.12(a)). In this case $C_{1}=x^{\prime} C y^{\prime} x^{\prime}$ and $C_{2}=x^{\prime} y^{\prime} C x^{\prime}$ are two cycles of G, and G is the union of the near-triangulation G_{1} consisting of C_{1} together with its interior, and the neartriangulation G_{2} consisting of C_{2} together with its interior. Now let L_{2} be the functions on $V\left(G_{2}\right)$ defined by $L_{2}\left(x^{\prime}\right)=\left\{c_{1}\left(x^{\prime}\right)\right\}, L_{2}\left(y^{\prime}\right)=\left\{c_{1}\left(y^{\prime}\right)\right\}$, and $L_{2}(v)=L(v)$ for $v \in V\left(G_{2}\right) \backslash\left\{x^{\prime}, y^{\prime}\right\}$.

Fig. 15.12. (a)

Then the hypotheses of the theorem are satisfied by G_{2} and L_{2} (where x^{\prime} and y^{\prime} of G_{2} play the roles of x and y, respectively, in the hypotheses).

Theorem 15.3.8 (continued 2)

Proof (continued). Since $v\left(G_{2}\right) \leq \ell$, by the induction hypothesis there is an L_{2}-colouring c_{2} of G_{2}. By the definition of L_{2}, the colourings c_{1} and c_{2} assign the same colours to x^{\prime} and y^{\prime} (the only two vertices common to G_{1} and G_{2}; we are establishing that the colouring we define on G is, in the terminology of modern algebra, well-defined). Thus the function c defined by $c(v)=c_{1}(v)$ for $v \in V\left(G_{1}\right)$ and $c(v)=c_{2}(v)$ for $v \in V\left(G_{2}\right) \backslash V\left(G_{1}\right)$ is an L-colouring of G. So the induction step is verified in this first case.

Consider the second case that the neighbors of x^{\prime} other than x and z lie on a path $x P z$ internally disjoint from C (such a path exists because of the triangulation property of G). See Figure 15.12(b) below. In this case, $G^{\prime}=G-x^{\prime}$ is a near-triangulation whose outer face is bounded by the cycle $C^{\prime}=x C z \stackrel{\leftarrow}{P} x$ (we need to reverse the $x P z$ path for this).

Theorem 15.3.8 (continued 2)

Proof (continued). Since $v\left(G_{2}\right) \leq \ell$, by the induction hypothesis there is an L_{2}-colouring c_{2} of G_{2}. By the definition of L_{2}, the colourings c_{1} and c_{2} assign the same colours to x^{\prime} and y^{\prime} (the only two vertices common to G_{1} and G_{2}; we are establishing that the colouring we define on G is, in the terminology of modern algebra, well-defined). Thus the function c defined by $c(v)=c_{1}(v)$ for $v \in V\left(G_{1}\right)$ and $c(v)=c_{2}(v)$ for $v \in V\left(G_{2}\right) \backslash V\left(G_{1}\right)$ is an L-colouring of G. So the induction step is verified in this first case.

Consider the second case that the neighbors of x^{\prime} other than x and z lie on a path $x P z$ internally disjoint from C (such a path exists because of the triangulation property of G). See Figure 15.12(b) below. In this case, $G^{\prime}=G-x^{\prime}$ is a near-triangulation whose outer face is bounded by the cycle $C^{\prime}=x C_{z} \overleftarrow{P} x$ (we need to reverse the $x P z$ path for this).

Theorem 15.3.8 (continued 3)

Proof (continued).

In this case, $G^{\prime}=G-x^{\prime}$ is a near-triangulation whose outer face is bounded by the cycle $C^{\prime}=x C_{z} \overleftarrow{P} x$ (we need to reverse the $x P z$ path for this). By hypothesis, $\left|L\left(x^{\prime}\right)\right| \geq 3$ and $|L(x)|=1$, so $\left|L\left(x^{\prime}\right) \backslash L(x)\right| \geq 2$. Let α and β be two distinct colours in $L\left(x^{\prime}\right) \backslash L(x)$. Define L^{\prime} on $V\left(G^{\prime}\right)$ as $L^{\prime}(v)=L(v) \backslash\{\alpha, \beta\} C$ for $v \in V(P) \backslash\{x, z\}$ and $L^{\prime}(v)=L(v)$ for all other vertices of G^{\prime}. Then L^{\prime} satisfies the hypotheses of the theorem (notice that for

Fig. 15.12.(b) $v \in V(P) \backslash\{x, z\}$ we have $\left|L^{\prime}(v)\right|=|L(v) \backslash\{\alpha, \beta\}| \geq|L(v)|-\mid\{\alpha, \beta\}$ $\geq 5-2=3$, as needed since such v are on cycle $\left.C^{\prime}\right)$. By the induction hypothesis (since $v\left(G^{\prime}\right)=\ell$), there is an L^{\prime}-colouring c^{\prime} of G^{\prime}.

Theorem 15.3.8 (continued 3)

Proof (continued).

In this case, $G^{\prime}=G-x^{\prime}$ is a near-triangulation whose outer face is bounded by the cycle $C^{\prime}=x C_{z} \overleftarrow{P} x$ (we need to reverse the $x P z$ path for this).
By hypothesis, $\left|L\left(x^{\prime}\right)\right| \geq 3$ and $|L(x)|=1$, so $\left|L\left(x^{\prime}\right) \backslash L(x)\right| \geq 2$. Let α and β be two distinct colours in $L\left(x^{\prime}\right) \backslash L(x)$.

Fig. 15.12.(b) the hypotheses of the theorem (notice that for $v \in V(P) \backslash\{x, z\}$ we have $\left|L^{\prime}(v)\right|=|L(v) \backslash\{\alpha, \beta\}| \geq|L(v)|-|\{\alpha, \beta\}|$ $\geq 5-2=3$, as needed since such v are on cycle $\left.C^{\prime}\right)$. By the induction hypothesis (since $v\left(G^{\prime}\right)=\ell$), there is an L^{\prime}-colouring c^{\prime} of G^{\prime}.

Theorem 15.3.8 (continued 4)

Theorem 15.3.8. Let G be a near-triangulation whose outer face is bounded by a cycle of C, and let x and y be consecutive vertices of C. Suppose that $L: V \rightarrow 2^{\mathbb{N}}$ (where $2^{\mathbb{N}}$ denotes the power set of \mathbb{N}) is an assignment of lists of colours to the vertices of G such that:
(i) $|L(x)|=|L(y)|=1$, where $L(x) \neq L(y)$,
(ii) $|L(v)| \geq 3$ for all $v \in V(C) \backslash\{x, y\}$, and
(iii) $|L(v)| \geq 5$ for all $v \in V(G) \backslash V(C)$.

Then G is L-colourable.
Proof (continued). One of the colours α and β is different from $c^{\prime}(z)$ (and by the choice no other neighbors of x^{\prime} in G is colour α or β), so we can assign that colour that colour to x^{\prime}. This extension of c^{\prime} is an L-colouring c of G. So the induction step is verified in this second case. So, by mathematical induction, the result holds for all graphs satisfying the hypotheses.

