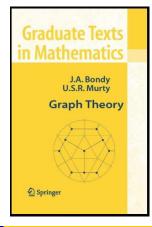
Graph Theory

Chapter 15. Colourings of Maps

15.4. Hadwiger's Conjecture—Proofs of Theorems



Graph Theory July 23, 2022 1 /

Theorem 15.13

Theorem 15.13

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) > 2^{k-2}v(G)$) has a K_k -minor.

Proof. We give an inductive proof on the number of edges m of G. If k=1 then G trivially has a K_1 -minor. If k=2 and $m \geq n/2$ (where $n \geq 2$, since G is simple) then G trivially has a K_2 -minor. When k=3 and $m \geq n$ we have by Theorem 4.3 then G is not a tree and so it contains a cycle. By a sequence of vertex deletions and edge contradictions, we have that G has a K_2 -minor. This we may assume $k \geq 4$. In these cases $m \geq 2n$. With n=1 we have $m \geq 2n=2$, with n=2 we have $m \geq 2n=4$, with n=3 we have $m \geq 2n=6$, with n=4 we have $m \geq 2n=8$, and in each of these cases the result holds vacuously. With n=5 and $m \geq 2n=10$ we must have m=10 and $G=K_5$ so that the result holds trivially. Then we may assume that $k \geq 4$ and $m \geq 10$. For the base case, we have that the result holds for all k < 4 and $m \leq 10$.

Theorem 15.12

Theorem 15.12. Every 4-chromatic graph contains a K_4 -subdivision.

Proof. Let G be a 4-chromatic graph. Then G contains a 4-critical subgraph F. By Theorem 14.7, $\delta(F) \geq 3$. By Exercise 10.1.5, F contains a subdivision of K_4 . This subdivision of K_4 is also a subgraph of G, as claimed.

() Graph Theory July 23, 2022 3 / 8

Theorem 15.1

Theorem 15.13 (continued 1)

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) \ge 2^{k-2}v(G)$) has a K_k -minor.

Proof (continued). For the induction hypotheses, suppose the result holds for all $m \le \ell$ (where $\ell = 10$). Let G be a graph with n vertices and $m = \ell + 1$ edges where $m \ge 2^{k-3}n$. We consider two cases.

First, suppose G has an edge e which lies in at most $2^{k-3}-1$ triangles. Then the underlying simple graph of G/e (notice that G/e itself might have multiple edges) has n-1 vertices. Each triangle of G which contains edge e results in a double edge in G/e, which is replaced by a single edge in the underlying simple graph of G/e. So this underlying simple graph has at least $m-2^{k-3} \geq 2^{k-3}n-2^{k-3}=2^{k-3}(n-1)$ edges. The underlying simple graph of G/e has less edges than graph G, so by the induction hypothesis it has a K_k -minor. This K_k -minor of G/e is also a minor of G and the induction step holds in this case.

Graph Theory July 23, 2022 4 / 8 () Graph Theory

Theorem 15.13

Theorem 15.13 (continued 2)

Proof (continued). Second suppose that each edge of G lies in at least 2^{k-3} triangles. For $e \in E$, denote by t(e) the number of triangles containing e. Any edge e of G is in the subgraph G[N(v)] induced by the neighbors of a vertex v if and only if v is the 'apex' of a triangle whose 'base' is e (i.e., v is a vertex of some triangle containing e, other than the two ends of edge e). Notice that edge e could be in several subgraphs G[N(v)]; in fact, it is such a subgraph t(e) times (i.e., for t(e) different vertices v). Hence we have

$$\sum_{v \in V} |E(G[N(v)])| = \sum_{e \in E} t(e) = 2^{k-3} m \text{ since each of the } m \text{ edges}$$
 lies in at least 2^{k-3} triangles in this case
$$= 2^{k-3} \sum_{v \in V} d(v)/2 \text{ by Theorem 1.1}$$

$$= \sum_{v \in V} 2^{k-4} d(v).$$

Graph Theory

July 23, 2022

- .

Corollary 15.14

Corollary 15.14. For $k \ge 2$, every $(2^{k-2} + 1)$ -chromatic graph has a K_k -minor.

Proof. Let G be a $(2^{k-2}+1)$ -chromatic graph and let F be a $(2^{k-2}+1)$ -critical subgraph of G. By Theorem 14.7, $\delta(F) \geq (2^{k-2}+1)-1=2^{k-2}$, and so $e(F) \geq \delta(F)v(F)/2 \geq 2^{2k-3}v(F)$. Hence by Theorem 15.7, F has a K_k -minor. Therefore, G has a K_k -minor, as claimed.

Graph Theory July 23, 2022 8 /

Theorem 15 13

Theorem 15.13 (continued 3)

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) \ge 2^{k-2}v(G)$) has a K_k -minor.

Proof (continued). This inequality implies that G has at least one vertex v such that its neighborhood subgraph H = G[N(v)] satisfies

$$e(H) \ge 2^{k-4} d(v) = 2^{k-4} v(H).$$
 (*)

Since H is a subgraph of G which excludes vertex v and all edges incident to v, then H has less edges than G. So, by the induction hypothesis (and (*)), H has a K_{k-1} -minor. This K_{k-1} along with vertex v and all edges between v and vertices of K_{k-1} (i.e., $K_{k-1} \vee K_1$ where $V(K_1) = \{v\}$) gives a K_k -minor of G. In both cases, G has a K_k -minor and so by mathematical induction the claim holds for all graphs satisfying the hypotheses. \square

() Graph Theory July 23, 2022 7 / 8