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Theorem 15.12

Theorem 15.12

Theorem 15.12. Every 4-chromatic graph contains a K4-subdivision.

Proof. Let G be a 4-chromatic graph. Then G contains a 4-critical
subgraph F . By Theorem 14.7, δ(F ) ≥ 3. By Exercise 10.1.5, F contains
a subdivision of K4. This subdivision of K4 is also a subgraph of G , as
claimed.
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Theorem 15.13

Theorem 15.13

Theorem 15.13. Every simple graph G with m ≥ 2k−3n (that is,
e(G ) ≥ 2k−2v(G )) has a Kk -minor.

Proof. We give an inductive proof on the number of edges m of G . If
k = 1 then G trivially has a K1-minor. If k = 2 and m ≥ n/2 (where
n ≥ 2, since G is simple) then G trivially has a K2-minor. When k = 3 and
m ≥ n we have by Theorem 4.3 then G is not a tree and so it contains a
cycle. By a sequence of vertex deletions and edge contradictions, we have
that G has a K2-minor. This we may assume k ≥ 4.

In these cases
m ≥ 2n. With n = 1 we have m ≥ 2n = 2, with n = 2 we have
m ≥ 2n = 4, with n = 3 we have m ≥ 2n = 6, with n = 4 we have
m ≥ 2n = 8, and in each of these cases the result holds vacuously. With
n = 5 and m ≥ 2n = 10 we must have m = 10 and G = K5 so that the
result holds trivially. Then we may assume that k ≥ 4 and m ≥ 10. For
the base case, we have that the result holds for all k < 4 and m ≤ 10.
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Theorem 15.13

Theorem 15.13 (continued 1)

Theorem 15.13. Every simple graph G with m ≥ 2k−3n (that is,
e(G ) ≥ 2k−2v(G )) has a Kk -minor.

Proof (continued). For the induction hypotheses, suppose the result
holds for all m ≤ ` (where ` = 10). Let G be a graph with n vertices and
m = ` + 1 edges where m ≥ 2k−3n. We consider two cases.

First, suppose G has an edge e which lies in at most 2k−3 − 1 triangles.
Then the underlying simple graph of G/e (notice that G/e itself might
have multiple edges) has n− 1 vertices. Each triangle of G which contains
edge e results in a double edge in G/e, which is replaced by a single edge
in the underlying simple graph of G/e. So this underlying simple graph
has at least m − 2k−3 ≥ 2k−3n − 2k−3 = 2k−3(n − 1) edges. The
underlying simple graph of G/e has less edges than graph G , so by the
induction hypothesis it has a Kk -minor. This Kk -minor of G/e is also a
minor of G and the induction step holds in this case.
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Theorem 15.13

Theorem 15.13 (continued 2)

Proof (continued). Second suppose that each edge of G lies in at least
2k−3 triangles. For e ∈ E , denote by t(e) the number of triangles
containing e. Any edge e of G is in the subgraph G [N(v)] induced by the
neighbors of a vertex v if and only if v is the ‘apex’ of a triangle whose
‘base’ is e (i.e., v is a vertex of some triangle containing e, other than the
two ends of edge e). Notice that edge e could be in several subgraphs
G [N(v)]; in fact, it is such a subgraph t(e) times (i.e., for t(e) different
vertices v). Hence we have∑

v∈V

|E (G [N(v)])| =
∑
e∈E

t(e) = 2k−3m since each of the m edges

lies in at least 2k−3 triangles in this case

= 2k−3
∑
v∈V

d(v)/2 by Theorem 1.1

=
∑
v∈V

2k−4d(v).
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Theorem 15.13

Theorem 15.13 (continued 3)

Theorem 15.13. Every simple graph G with m ≥ 2k−3n (that is,
e(G ) ≥ 2k−2v(G )) has a Kk -minor.

Proof (continued). This inequality implies that G has at least one vertex
v such that its neighborhood subgraph H = G [N(v)] satisfies

e(H) ≥ 2k−4d(v) = 2k−4v(H). (∗)

Since H is a subgraph of G which excludes vertex v and all edges incident
to v , then H has less edges than G . So, by the induction hypothesis (and
(∗)), H has a Kk−1-minor. This Kk−1 along with vertex v and all edges
between v and vertices of Kk−1 (i.e., Kk−1 ∨K1 where V (K1) = {v}) gives
a Kk -minor of G . In both cases, G has a Kk -minor and so by mathematical
induction the claim holds for all graphs satisfying the hypotheses.
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Corollary 15.14

Corollary 15.14

Corollary 15.14. For k ≥ 2, every (2k−2 + 1)-chromatic graph has a
Kk -minor.

Proof. Let G be a (2k−2 + 1)-chromatic graph and let F be a
(2k−2 + 1)-critical subgraph of G . By Theorem 14.7,
δ(F ) ≥ (2k−2 + 1)− 1 = 2k−2, and so e(F ) ≥ δ(F )v(F )/2 ≥ 22k−3v(F ).
Hence by Theorem 15.7, F has a Kk -minor. Therefore, G has a Kk -minor,
as claimed.

() Graph Theory July 23, 2022 8 / 8



Corollary 15.14

Corollary 15.14

Corollary 15.14. For k ≥ 2, every (2k−2 + 1)-chromatic graph has a
Kk -minor.

Proof. Let G be a (2k−2 + 1)-chromatic graph and let F be a
(2k−2 + 1)-critical subgraph of G . By Theorem 14.7,
δ(F ) ≥ (2k−2 + 1)− 1 = 2k−2, and so e(F ) ≥ δ(F )v(F )/2 ≥ 22k−3v(F ).
Hence by Theorem 15.7, F has a Kk -minor. Therefore, G has a Kk -minor,
as claimed.

() Graph Theory July 23, 2022 8 / 8


	Theorem 15.12
	Theorem 15.13
	Corollary 15.14

