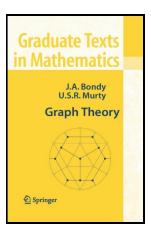
Graph Theory

Chapter 15. Colourings of Maps 15.4. Hadwiger's Conjecture—Proofs of Theorems



Theorem 15.12. Every 4-chromatic graph contains a K₄-subdivision.

Proof. Let *G* be a 4-chromatic graph. Then *G* contains a 4-critical subgraph *F*. By Theorem 14.7, $\delta(F) \ge 3$. By Exercise 10.1.5, *F* contains a subdivision of K_4 . This subdivision of K_4 is also a subgraph of *G*, as claimed.

Graph Theory

Theorem 15.12. Every 4-chromatic graph contains a K_4 -subdivision.

Proof. Let *G* be a 4-chromatic graph. Then *G* contains a 4-critical subgraph *F*. By Theorem 14.7, $\delta(F) \ge 3$. By Exercise 10.1.5, *F* contains a subdivision of K_4 . This subdivision of K_4 is also a subgraph of *G*, as claimed.

Graph Theory

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) \ge 2^{k-2}v(G)$) has a K_k -minor.

Proof. We give an inductive proof on the number of edges m of G. If k = 1 then G trivially has a K_1 -minor. If k = 2 and $m \ge n/2$ (where $n \ge 2$, since G is simple) then G trivially has a K_2 -minor. When k = 3 and $m \ge n$ we have by Theorem 4.3 then G is not a tree and so it contains a cycle. By a sequence of vertex deletions and edge contradictions, we have that G has a K_2 -minor. This we may assume $k \ge 4$.

Graph Theory

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) \ge 2^{k-2}v(G)$) has a K_k -minor.

Proof. We give an inductive proof on the number of edges *m* of *G*. If k = 1 then G trivially has a K₁-minor. If k = 2 and $m \ge n/2$ (where n > 2, since G is simple) then G trivially has a K_2 -minor. When k = 3 and m > n we have by Theorem 4.3 then G is not a tree and so it contains a cycle. By a sequence of vertex deletions and edge contradictions, we have that G has a K_2 -minor. This we may assume k > 4. In these cases $m \ge 2n$. With n = 1 we have $m \ge 2n = 2$, with n = 2 we have m > 2n = 4, with n = 3 we have m > 2n = 6, with n = 4 we have m > 2n = 8, and in each of these cases the result holds vacuously. With n = 5 and $m \ge 2n = 10$ we must have m = 10 and $G = K_5$ so that the result holds trivially. Then we may assume that $k \ge 4$ and $m \ge 10$. For the base case, we have that the result holds for all k < 4 and m < 10.

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) \ge 2^{k-2}v(G)$) has a K_k -minor.

Proof. We give an inductive proof on the number of edges m of G. If k = 1 then G trivially has a K₁-minor. If k = 2 and $m \ge n/2$ (where n > 2, since G is simple) then G trivially has a K_2 -minor. When k = 3 and m > n we have by Theorem 4.3 then G is not a tree and so it contains a cycle. By a sequence of vertex deletions and edge contradictions, we have that G has a K_2 -minor. This we may assume k > 4. In these cases m > 2n. With n = 1 we have m > 2n = 2, with n = 2 we have m > 2n = 4, with n = 3 we have m > 2n = 6, with n = 4 we have m > 2n = 8, and in each of these cases the result holds vacuously. With n = 5 and $m \ge 2n = 10$ we must have m = 10 and $G = K_5$ so that the result holds trivially. Then we may assume that $k \ge 4$ and $m \ge 10$. For the base case, we have that the result holds for all k < 4 and $m \le 10$.

Theorem 15.13 (continued 1)

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) \ge 2^{k-2}v(G)$) has a K_k -minor.

Proof (continued). For the induction hypotheses, suppose the result holds for all $m \le \ell$ (where $\ell = 10$). Let *G* be a graph with *n* vertices and $m = \ell + 1$ edges where $m \ge 2^{k-3}n$. We consider two cases.

First, suppose G has an edge e which lies in at most $2^{k-3} - 1$ triangles. Then the underlying simple graph of G/e (notice that G/e itself might have multiple edges) has n-1 vertices. Each triangle of G which contains edge e results in a double edge in G/e, which is replaced by a single edge in the underlying simple graph of G/e. So this underlying simple graph has at least $m - 2^{k-3} \ge 2^{k-3}n - 2^{k-3} = 2^{k-3}(n-1)$ edges. The underlying simple graph of G/e has less edges than graph G, so by the induction hypothesis it has a K_k -minor. This K_k -minor of G/e is also a minor of G and the induction step holds in this case.

Theorem 15.13 (continued 1)

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) \ge 2^{k-2}v(G)$) has a K_k -minor.

Proof (continued). For the induction hypotheses, suppose the result holds for all $m \le \ell$ (where $\ell = 10$). Let G be a graph with n vertices and $m = \ell + 1$ edges where $m \ge 2^{k-3}n$. We consider two cases.

First, suppose G has an edge e which lies in at most $2^{k-3} - 1$ triangles. Then the underlying simple graph of G/e (notice that G/e itself might have multiple edges) has n-1 vertices. Each triangle of G which contains edge e results in a double edge in G/e, which is replaced by a single edge in the underlying simple graph of G/e. So this underlying simple graph has at least $m - 2^{k-3} \ge 2^{k-3}n - 2^{k-3} = 2^{k-3}(n-1)$ edges. The underlying simple graph of G/e has less edges than graph G, so by the induction hypothesis it has a K_k -minor. This K_k -minor of G/e is also a minor of G and the induction step holds in this case.

Theorem 15.13 (continued 2)

Proof (continued). Second suppose that each edge of G lies in at least 2^{k-3} triangles. For $e \in E$, denote by t(e) the number of triangles containing e. Any edge e of G is in the subgraph G[N(v)] induced by the neighbors of a vertex v if and only if v is the 'apex' of a triangle whose 'base' is e (i.e., v is a vertex of some triangle containing e, other than the two ends of edge e). Notice that edge e could be in several subgraphs G[N(v)]; in fact, it is such a subgraph t(e) times (i.e., for t(e) different vertices v). Hence we have

$$\sum_{v \in V} |E(G[N(v)])| = \sum_{e \in E} t(e) = 2^{k-3}m \text{ since each of the } m \text{ edges}$$

lies in at least 2^{k-3} triangles in this case

$$= 2^{k-3} \sum_{v \in V} d(v)/2 \text{ by Theorem 1.1}$$
$$= \sum 2^{k-4} d(v).$$

Theorem 15.13 (continued 2)

Proof (continued). Second suppose that each edge of G lies in at least 2^{k-3} triangles. For $e \in E$, denote by t(e) the number of triangles containing e. Any edge e of G is in the subgraph G[N(v)] induced by the neighbors of a vertex v if and only if v is the 'apex' of a triangle whose 'base' is e (i.e., v is a vertex of some triangle containing e, other than the two ends of edge e). Notice that edge e could be in several subgraphs G[N(v)]; in fact, it is such a subgraph t(e) times (i.e., for t(e) different vertices v). Hence we have

$$\sum_{v \in V} |E(G[N(v)])| = \sum_{e \in E} t(e) = 2^{k-3}m \text{ since each of the } m \text{ edges}$$

lies in at least 2^{k-3} triangles in this case
$$= 2^{k-3} \sum_{v \in V} d(v)/2 \text{ by Theorem 1.1}$$

$$= \sum_{v \in V} 2^{k-4} d(v).$$

Theorem 15.13 (continued 3)

Theorem 15.13. Every simple graph G with $m \ge 2^{k-3}n$ (that is, $e(G) \ge 2^{k-2}v(G)$) has a K_k -minor.

Proof (continued). This inequality implies that G has at least one vertex v such that its neighborhood subgraph H = G[N(v)] satisfies

$$e(H) \ge 2^{k-4}d(v) = 2^{k-4}v(H).$$
 (*)

Since *H* is a subgraph of *G* which excludes vertex *v* and all edges incident to *v*, then *H* has less edges than *G*. So, by the induction hypothesis (and (*)), *H* has a K_{k-1} -minor. This K_{k-1} along with vertex *v* and all edges between *v* and vertices of K_{k-1} (i.e., $K_{k-1} \vee K_1$ where $V(K_1) = \{v\}$) gives a K_k -minor of *G*. In both cases, *G* has a K_k -minor and so by mathematical induction the claim holds for all graphs satisfying the hypotheses.

Corollary 15.14. For $k \ge 2$, every $(2^{k-2} + 1)$ -chromatic graph has a K_k -minor.

Proof. Let *G* be a $(2^{k-2} + 1)$ -chromatic graph and let *F* be a $(2^{k-2} + 1)$ -critical subgraph of *G*. By Theorem 14.7, $\delta(F) \ge (2^{k-2} + 1) - 1 = 2^{k-2}$, and so $e(F) \ge \delta(F)v(F)/2 \ge 2^{2k-3}v(F)$. Hence by Theorem 15.7, *F* has a K_k -minor. Therefore, *G* has a K_k -minor, as claimed.

Corollary 15.14. For $k \ge 2$, every $(2^{k-2} + 1)$ -chromatic graph has a K_k -minor.

Proof. Let *G* be a $(2^{k-2} + 1)$ -chromatic graph and let *F* be a $(2^{k-2} + 1)$ -critical subgraph of *G*. By Theorem 14.7, $\delta(F) \ge (2^{k-2} + 1) - 1 = 2^{k-2}$, and so $e(F) \ge \delta(F)v(F)/2 \ge 2^{2k-3}v(F)$. Hence by Theorem 15.7, *F* has a K_k -minor. Therefore, *G* has a K_k -minor, as claimed.

()