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16.2. Matchings in Bipartite Graphs—Proofs of Theorems
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Theorem 16.4. Hall's Theorem

Theorem 16.4. Hall's Theorem.

A bipartite graph G = G[X, Y] has a matching which covers every vertex
in X if and only if |[N(S)| > |S]| for all S C X (where N(S) is the set of all
vertices which are neighbors of some vertex in S).
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Theorem 16.4. Hall's Theorem

Theorem 16.4. Hall's Theorem.

A bipartite graph G = G[X, Y] has a matching which covers every vertex
in X if and only if |[N(S)| > |S]| for all S C X (where N(S) is the set of all
vertices which are neighbors of some vertex in S).

Proof. Let G = G[X, Y] be a bipartite graph which has a matching M
covering every vertex in X. Let S C X. The vertices in S are matched in

M with distinct vertices in N(S), defining an injective (“one to one")
function from S to N(S). So |[N(S)| > |S|, as claimed.
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Theorem 16.4. Hall's Theorem.

A bipartite graph G = G[X, Y] has a matching which covers every vertex
in X if and only if |[N(S)| > |S]| for all S C X (where N(S) is the set of all
vertices which are neighbors of some vertex in S).

Proof. Let G = G[X, Y] be a bipartite graph which has a matching M
covering every vertex in X. Let S C X. The vertices in S are matched in
M with distinct vertices in N(S), defining an injective (“one to one")
function from S to N(S). So |[N(S)| > |S|, as claimed.

Conversely, let G = G[X, Y] be a bipartite graph which has no matching
covering every vertex in X. Let M* be a maximum matching in G and let
u be a vertex in X not covered by M*. Let Z denote the set of all vertices
reachable from u by M*-alternating paths. Because M* is a maximum
matching, by Theorem 16.3 G contains no M*-augmenting path.
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Theorem 16.4 (continued 1)

Proof (continued). Since u € X is not covered by M*, for any z € Z
with z # u we have that there is an M*-alternating path from v to z
(which starts with an edge NOT in M*). If z is not covered by M*, then
the M*-alternating path from u to z is in fact an M*-augmented path in
G, contradicting the fact that G contains no M*-augmented paths. Hence,
z is covered by M* and so u is the only element of Z not covered by M*.
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Theorem 16.4 (continued 1)

Proof (continued). Since u € X is not covered by M*, for any z € Z
with z # u we have that there is an M*-alternating path from v to z
(which starts with an edge NOT in M*). If z is not covered by M*, then
the M*-alternating path from u to z is in fact an M*-augmented path in
G, contradicting the fact that G contains no M*-augmented paths. Hence,
z is covered by M* and so u is the only element of Z not covered by M*.

Define R=XNZ and B =Y N Z (see Figure 16.6).
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Fig. 16.6. Proof of Hall’'s Theorem (16.4)
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Theorem 16.4 (continued 2)

Proof (continued).

U .

B
Fig. 16.6. Proof of Hall’'s Theorem (16.4)

Now the vertices of R\ {u} are matched under M* with the vertices of B
(because of the M*-alternating path definition of Z). This implies a
bijection between R\ {u} and B so that |B| = |R| — 1. Now the neighbors
of vertices in R include all vertices in B; that is N(R) D B. In fact, every
vertex in N(R) C Z is connected to u by an M*-alternating path, and so
N(R) = B. Hence [N(R)| = |B| = |R| — 1.
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Theorem 16.4 (continued 3)

Theorem 16.4. Hall's Theorem.

A bipartite graph G = G[X, Y] has a matching which covers every vertex
in X if and only if |N(S)| > |S| for all S C X (where N(S) is the set of all
vertices which are neighbors of some vertex in S).

Proof (continued). So with set S equal to set R, we have

IN(R)| = [N(S)| < |S| = |R|. Thatis, if G = G[X, Y] does not have a
matching which covers every vertex in X then |N(S)| < |S| for some

S C X, as claimed. O
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Corollary 16.6

Corollary 16.6. Every nonempty regular bipartite graph has a perfect
matching.
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Corollary 16.6

Corollary 16.6. Every nonempty regular bipartite graph has a perfect
matching.

Proof. First, if G[X, Y] is k-regular where k > 1 then |X| = Y| by
Exercise 1.1.9. Let S C X and let E; and E; denote the sets of edges of G
incident with S an dN(S), respectively. Notice that E; C Ejp, since every
edge with one end in S must have the other end in N(S) (but not
conversely). Since G is k-regular, then k|N(S)| = |E2| > |E1| = k|S].
Therefore [N(S)| > |S|. Since S C X is arbitrary, by Corollary 16.5 we
have that G has a perfect matching. Ol

Graph Theory June 28,2022 7/8



Theorem 8.32

Theorem 8.32. The Konig-Egervary Theorem.
In any bipartite graph G, the number of edges in a maximum matching is
equal to the number of vertices in a minimum covering.
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Theorem 8.32

Theorem 8.32. The Konig-Egervary Theorem.

In any bipartite graph G, the number of edges in a maximum matching is
equal to the number of vertices in a minimum covering.

Proof. Let G = G[X, Y] be a bipartite graph with M* a maximum
matching in G, and U the set of vertices in X not covered by M*. Denote

by Z the set of all vertices in G reachable from some vertex in U by
M*-alternating paths.
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Theorem 8.32

Theorem 8.32. The Konig-Egervary Theorem.
In any bipartite graph G, the number of edges in a maximum matching is
equal to the number of vertices in a minimum covering.

Proof. Let G = G[X, Y] be a bipartite graph with M* a maximum
matching in G, and U the set of vertices in X not covered by M*. Denote
by Z the set of all vertices in G reachable from some vertex in U by
M*-alternating paths.

Define R=XNZand B=YNZ. Let K*=(Z\ R)UB. Then K* is a
covering with |K*| = |M*| by Exercise 16.2.8. By Proposition 16.7, K* is
a minimum cover. That is, /(G) = |M*| = |K*| = 5(G), as claimed. [
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