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Theorem 16.4. Hall’s Theorem

Theorem 16.4. Hall’s Theorem

Theorem 16.4. Hall’s Theorem.
A bipartite graph G = G [X ,Y ] has a matching which covers every vertex
in X if and only if |N(S)| ≥ |S | for all S ⊆ X (where N(S) is the set of all
vertices which are neighbors of some vertex in S).

Proof. Let G = G [X ,Y ] be a bipartite graph which has a matching M
covering every vertex in X . Let S ⊆ X . The vertices in S are matched in
M with distinct vertices in N(S), defining an injective (“one to one”)
function from S to N(S). So |N(S)| ≥ |S |, as claimed.

Conversely, let G = G [X ,Y ] be a bipartite graph which has no matching
covering every vertex in X . Let M∗ be a maximum matching in G and let
u be a vertex in X not covered by M∗. Let Z denote the set of all vertices
reachable from u by M∗-alternating paths. Because M∗ is a maximum
matching, by Theorem 16.3 G contains no M∗-augmenting path.
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Theorem 16.4. Hall’s Theorem

Theorem 16.4 (continued 1)

Proof (continued). Since u ∈ X is not covered by M∗, for any z ∈ Z
with z 6= u we have that there is an M∗-alternating path from u to z
(which starts with an edge NOT in M∗). If z is not covered by M∗, then
the M∗-alternating path from u to z is in fact an M∗-augmented path in
G , contradicting the fact that G contains no M∗-augmented paths. Hence,
z is covered by M∗ and so u is the only element of Z not covered by M∗.

Define R = X ∩ Z and B = Y ∩ Z (see Figure 16.6).
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Theorem 16.4. Hall’s Theorem

Theorem 16.4 (continued 2)

Proof (continued).

Now the vertices of R \ {u} are matched under M∗ with the vertices of B
(because of the M∗-alternating path definition of Z ). This implies a
bijection between R \ {u} and B so that |B| = |R| − 1. Now the neighbors
of vertices in R include all vertices in B; that is N(R) ⊃ B. In fact, every
vertex in N(R) ⊂ Z is connected to u by an M∗-alternating path, and so
N(R) = B. Hence |N(R)| = |B| = |R| − 1.
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Theorem 16.4. Hall’s Theorem

Theorem 16.4 (continued 3)

Theorem 16.4. Hall’s Theorem.
A bipartite graph G = G [X ,Y ] has a matching which covers every vertex
in X if and only if |N(S)| ≥ |S | for all S ⊆ X (where N(S) is the set of all
vertices which are neighbors of some vertex in S).

Proof (continued). So with set S equal to set R, we have
|N(R)| = |N(S)| < |S | = |R|. That is, if G = G [X ,Y ] does not have a
matching which covers every vertex in X then |N(S)| < |S | for some
S ⊆ X , as claimed.
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Corollary 16.6

Corollary 16.6. Every nonempty regular bipartite graph has a perfect
matching.

Proof. First, if G [X ,Y ] is k-regular where k ≥ 1 then |X | = |Y | by
Exercise 1.1.9. Let S ⊆ X and let E1 and E2 denote the sets of edges of G
incident with S an dN(S), respectively. Notice that E1 ⊆ E2, since every
edge with one end in S must have the other end in N(S) (but not
conversely). Since G is k-regular, then k|N(S)| = |E2| ≥ |E1| = k|S |.
Therefore |N(S)| ≥ |S |. Since S ⊆ X is arbitrary, by Corollary 16.5 we
have that G has a perfect matching.
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Theorem 8.32

Theorem 8.32. The König-Egerváry Theorem.
In any bipartite graph G , the number of edges in a maximum matching is
equal to the number of vertices in a minimum covering.

Proof. Let G = G [X ,Y ] be a bipartite graph with M∗ a maximum
matching in G , and U the set of vertices in X not covered by M∗. Denote
by Z the set of all vertices in G reachable from some vertex in U by
M∗-alternating paths.

Define R = X ∩ Z and B = Y ∩ Z . Let K ∗ = (Z \ R) ∪ B. Then K ∗ is a
covering with |K ∗| = |M∗| by Exercise 16.2.8. By Proposition 16.7, K ∗ is
a minimum cover. That is, α′(G ) = |M∗| = |K ∗| = β(G ), as claimed.
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