Graph Theory

Chapter 16. Matchings

16.2. Matchings in Bipartite Graphs-Proofs of Theorems

2 Corollary 16.6

Theorem 16.4. Hall's Theorem.

A bipartite graph G = G[X, Y] has a matching which covers every vertex in X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$ (where N(S) is the set of all vertices which are neighbors of some vertex in S).

Proof. Let G = G[X, Y] be a bipartite graph which has a matching M covering every vertex in X. Let $S \subseteq X$. The vertices in S are matched in M with distinct vertices in N(S), defining an injective ("one to one") function from S to N(S). So $|N(S)| \ge |S|$, as claimed.

Theorem 16.4. Hall's Theorem.

A bipartite graph G = G[X, Y] has a matching which covers every vertex in X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$ (where N(S) is the set of all vertices which are neighbors of some vertex in S).

Proof. Let G = G[X, Y] be a bipartite graph which has a matching M covering every vertex in X. Let $S \subseteq X$. The vertices in S are matched in M with distinct vertices in N(S), defining an injective ("one to one") function from S to N(S). So $|N(S)| \ge |S|$, as claimed.

Conversely, let G = G[X, Y] be a bipartite graph which has no matching covering every vertex in X. Let M^* be a maximum matching in G and let u be a vertex in X not covered by M^* . Let Z denote the set of all vertices reachable from u by M^* -alternating paths. Because M^* is a maximum matching, by Theorem 16.3 G contains no M^* -augmenting path.

Theorem 16.4. Hall's Theorem.

A bipartite graph G = G[X, Y] has a matching which covers every vertex in X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$ (where N(S) is the set of all vertices which are neighbors of some vertex in S).

Proof. Let G = G[X, Y] be a bipartite graph which has a matching M covering every vertex in X. Let $S \subseteq X$. The vertices in S are matched in M with distinct vertices in N(S), defining an injective ("one to one") function from S to N(S). So $|N(S)| \ge |S|$, as claimed.

Conversely, let G = G[X, Y] be a bipartite graph which has no matching covering every vertex in X. Let M^* be a maximum matching in G and let u be a vertex in X not covered by M^* . Let Z denote the set of all vertices reachable from u by M^* -alternating paths. Because M^* is a maximum matching, by Theorem 16.3 G contains no M^* -augmenting path.

Theorem 16.4 (continued 1)

Proof (continued). Since $u \in X$ is not covered by M^* , for any $z \in Z$ with $z \neq u$ we have that there is an M^* -alternating path from u to z (which starts with an edge NOT in M^*). If z is not covered by M^* , then the M^* -alternating path from u to z is in fact an M^* -augmented path in G, contradicting the fact that G contains no M^* -augmented paths. Hence, z is covered by M^* and so u is the only element of Z not covered by M^* .

Define $R = X \cap Z$ and $B = Y \cap Z$ (see Figure 16.6).

Theorem 16.4 (continued 1)

Proof (continued). Since $u \in X$ is not covered by M^* , for any $z \in Z$ with $z \neq u$ we have that there is an M^* -alternating path from u to z (which starts with an edge NOT in M^*). If z is not covered by M^* , then the M^* -alternating path from u to z is in fact an M^* -augmented path in G, contradicting the fact that G contains no M^* -augmented paths. Hence, z is covered by M^* and so u is the only element of Z not covered by M^* .

Define $R = X \cap Z$ and $B = Y \cap Z$ (see Figure 16.6).

Fig. 16.6. Proof of Hall's Theorem (16.4)

Theorem 16.4 (continued 1)

Proof (continued). Since $u \in X$ is not covered by M^* , for any $z \in Z$ with $z \neq u$ we have that there is an M^* -alternating path from u to z (which starts with an edge NOT in M^*). If z is not covered by M^* , then the M^* -alternating path from u to z is in fact an M^* -augmented path in G, contradicting the fact that G contains no M^* -augmented paths. Hence, z is covered by M^* and so u is the only element of Z not covered by M^* .

Define $R = X \cap Z$ and $B = Y \cap Z$ (see Figure 16.6).

Fig. 16.6. Proof of Hall's Theorem (16.4)

Theorem 16.4 (continued 2)

Proof (continued).

Fig. 16.6. Proof of Hall's Theorem (16.4)

Now the vertices of $R \setminus \{u\}$ are matched under M^* with the vertices of B (because of the M^* -alternating path definition of Z). This implies a bijection between $R \setminus \{u\}$ and B so that |B| = |R| - 1. Now the neighbors of vertices in R include all vertices in B; that is $N(R) \supset B$. In fact, every vertex in $N(R) \subset Z$ is connected to u by an M^* -alternating path, and so N(R) = B. Hence |N(R)| = |B| = |R| - 1.

Theorem 16.4 (continued 3)

Theorem 16.4. Hall's Theorem.

A bipartite graph G = G[X, Y] has a matching which covers every vertex in X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$ (where N(S) is the set of all vertices which are neighbors of some vertex in S).

Proof (continued). So with set *S* equal to set *R*, we have |N(R)| = |N(S)| < |S| = |R|. That is, if G = G[X, Y] does not have a matching which covers every vertex in *X* then |N(S)| < |S| for some $S \subseteq X$, as claimed.

Corollary 16.6. Every nonempty regular bipartite graph has a perfect matching.

Proof. First, if G[X, Y] is k-regular where $k \ge 1$ then |X| = |Y| by Exercise 1.1.9. Let $S \subseteq X$ and let E_1 and E_2 denote the sets of edges of G incident with S an dN(S), respectively. Notice that $E_1 \subseteq E_2$, since every edge with one end in S must have the other end in N(S) (but not conversely). Since G is k-regular, then $k|N(S)| = |E_2| \ge |E_1| = k|S|$. Therefore $|N(S)| \ge |S|$. Since $S \subseteq X$ is arbitrary, by Corollary 16.5 we have that G has a perfect matching.

Corollary 16.6. Every nonempty regular bipartite graph has a perfect matching.

Proof. First, if G[X, Y] is k-regular where $k \ge 1$ then |X| = |Y| by Exercise 1.1.9. Let $S \subseteq X$ and let E_1 and E_2 denote the sets of edges of G incident with S and N(S), respectively. Notice that $E_1 \subseteq E_2$, since every edge with one end in S must have the other end in N(S) (but not conversely). Since G is k-regular, then $k|N(S)| = |E_2| \ge |E_1| = k|S|$. Therefore $|N(S)| \ge |S|$. Since $S \subseteq X$ is arbitrary, by Corollary 16.5 we have that G has a perfect matching.

Theorem 8.32

Theorem 8.32. The König-Egerváry Theorem.

In any bipartite graph G, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.

Proof. Let G = G[X, Y] be a bipartite graph with M^* a maximum matching in G, and U the set of vertices in X not covered by M^* . Denote by Z the set of all vertices in G reachable from some vertex in U by M^* -alternating paths.

Theorem 8.32. The König-Egerváry Theorem.

In any bipartite graph G, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.

Proof. Let G = G[X, Y] be a bipartite graph with M^* a maximum matching in G, and U the set of vertices in X not covered by M^* . Denote by Z the set of all vertices in G reachable from some vertex in U by M^* -alternating paths.

Define $R = X \cap Z$ and $B = Y \cap Z$. Let $K^* = (Z \setminus R) \cup B$. Then K^* is a covering with $|K^*| = |M^*|$ by Exercise 16.2.8. By Proposition 16.7, K^* is a minimum cover. That is, $\alpha'(G) = |M^*| = |K^*| = \beta(G)$, as claimed.

Theorem 8.32. The König-Egerváry Theorem.

In any bipartite graph G, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.

Proof. Let G = G[X, Y] be a bipartite graph with M^* a maximum matching in G, and U the set of vertices in X not covered by M^* . Denote by Z the set of all vertices in G reachable from some vertex in U by M^* -alternating paths.

Define $R = X \cap Z$ and $B = Y \cap Z$. Let $K^* = (Z \setminus R) \cup B$. Then K^* is a covering with $|K^*| = |M^*|$ by Exercise 16.2.8. By Proposition 16.7, K^* is a minimum cover. That is, $\alpha'(G) = |M^*| = |K^*| = \beta(G)$, as claimed.