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Lemma 16.3.A

Lemma 16.3.A

Lemma 16.3.A. Let S be a proper subset of V (G ) and let M be a
matching in G . Let U be the set of vertices of G not covered by M. Then

|U| ≥ o(G − S)− |S |. (16.2)

Proof. Let H be an odd connected component of G − S (there are
o(G − S) such H). If every vertex of H is covered by M then, since H has
an odd number of vertices, at least one vertex of H must be matched with
a vertex of S . No more that |S | vertices of G − S can be matched (with
respect to M) with vertices of S , so at least o(G − S)− |S | odd
components of G must contain vertices not covered by M. Since U is the
set of all vertices of G not covered by M, then |U| ≥ o(G − S)− |S |, as
claimed.
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Lemma 16.10

Lemma 16.10

Lemma 16.10. Let G be a connected graph, no vertex of which is
essential. Then G is hypomatchable.

Proof. Since no vertex is essential, then for each vertex v of G then there
is a maximum matching of G which does not cover v . So G has no
perfect matching. To show that G is hypomatchable, we need to show
that every vertex-deleted subgraph of G has a perfect matching. Notice
that we can assume that the vertex-deleted graph is on an even number of
vertices.

If there is a vertex-deleted subgraph of G that does not have a
perfect matching then each maximum matching of such a graph must
leave at least two vertices uncovered. Thus it suffices to show that for any
maximum matching and any two vertices of G , the matching covers at
least one of these vertices. We establish this by induction on the distance
between these two vertices.
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Lemma 16.10

Lemma 16.10 (continued 1)

Proof (continued). For the base case, suppose the vertices are distance
one part; that is, suppose they are adjacent. If neither is covered by the
maximum matching, then the edge joining the two vertices can be added
to the matching, contradicting maximality. This establishes the base case.
For the induction hypothesis, suppose that for any two vertices of G of
distance d or less apart, a maximum matching of G contains one or the
other vertex.

Consider a maximum matching M and two vertices x and y in G . Let xPy
be a shortest xy -path in G and suppose xPy has length d + 1 ≥ 2.
ASSUME that neither x nor y is covered by M. Since P has length at
least two, there is v an internal vertex of P. Since xPv le length ld or less,
then vertex v is covered by M, by the induction hypothesis. By hypothesis
v is inessential, so G has a matching M ′ which does not cover v .
Furthermore, because xPv and vPy are both of length d or less, then
matching M ′ covers both x and y , again by the induction hypothesis.
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Lemma 16.10

Lemma 16.10 (continued 2)

Proof (continued). By Exercise 16.1.5, the components of G [M4M ′] are
even length paths whose edges belong alternately to m and M ′, and even
length cycles whose edges belong alternately to M and M ′. Each of the
vertices x , v , y is covered by exactly one of the two matchings (by
construction) and so the edge covering them is in M4M ′. Now every
vertex that is an interior vertex of one of the paths or a vertex of one of
the cycles is contained in both an edge of M and an edge of M ′ (because
of the alternating M/M ′ structure of the paths and cycles). Hence,
vertices x , v , y must each be an end vertex of a path. Because the paths
are even length, x and y are not ends of the same path (ends of an
alternating M/M ′ even path would have one end in M and the other end
in M ′, but x and y are both covered by M ′). Moreover the paths starting
at x and y cannot both end at v (since the alternating M/M ′ property of
the even paths would then require both paths to end at v with an edge in
M, but two edges in matching M cannot share a vertex).
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Lemma 16.10

Lemma 16.10 (continued 3)

Proof (continued). So we may suppose that the path Q that starts at x
ends neither at v nor at y (that is, without loss of generality; if not then
the path starting at y has this type of property). Since x is covered by M ′

(and not covered by M), then even length path Q starts with an edge of
M ′ with s as one end. Denote the other end of Q as w . Since Q is even
length and has the M/M ′ alternating property, then the edge of Q
containing w is in M. So no other edge of M can cover w . If an edge of
M ′ contains w then this edge is therefore in M4M ′. This edge of M ′

could be used to either increase the length of the M/M ′ alternating path
Q (a contradiction, since Q ends at w) or this edge of M ′ must be
contained in an M/M ′ alternating cycle (also a contradiction since no
other edge of M covers w .
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Lemma 16.10

Lemma 16.10 (continued 4)

Lemma 16.10. Let G be a connected graph, no vertex of which is
essential. Then G is hypomatchable.

Proof (continued). Thus M ′4E (Q) (the edges of M ′, but with the
edges of M ′ in Q replaced with the edges of M ′ in Q) is a matching.
Since Q includes e(Q)/2 edges of M ′ and e(Q)/2 edges of M, then
|M ′| = |M ′4E (Q)|. Since M ′ is a maximum matching of G , then
M ′4E (Q) is also a maximum matching of G . However, M ′4E (Q) covers
neither x nor v . Now we know that the distance between x and v in G is
d of less, so the fact that neither x nor v is covered by maximum
matching M ′4E (Q) CONTRADICTS the induction hypothesis. Hence the
assumption that there are two vertices (x and y) of G that are not
covered by matching M is false. As described in the initial part of the
proof, this establishes the fact that G is hypomatchable, as claimed.
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