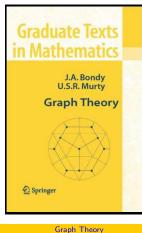
Graph Theory

Chapter 16. Matchings

16.4. Perfect Matchings and Factors—Proofs of Theorems



·

heory July 1, 2022 1 / 5

Theorem 16.14. Petersen's Theorem

Theorem 16.14. Petersen's Theorem

Theorem 16.14. Petersen's Theorem.

Every 3-regular graph without cut edges has a perfect matching.

Proof. Let G be a 3-regular graph without cut edges. Let $S \subseteq V$. Let the certex sets of the odd components of G-S be S_1, S_2, \ldots, S_k . Recall from Section 2.5. Edge Cuts and Bonds that for $X \subseteq V$ we have $d(X) = |\partial(X)|$ where $\partial(X)$ is the coboundary (or "edge cut") of set X (i.e., the edges of G with exactly one end in X). In G, if $d(S_i) = 1$ then the one edge in $\partial(S_i)$ is a cut edge of G. Since G has no cut edges, then $d(S_i) \geq 2$ for each $1 \leq i \leq k$. Since $|S_i|$ is odd, then by Exercise 2.5.5 $d(S_i)$ is odd for $1 \leq i \leq k$. Therefore, $d(S_i) \geq 3$ for $1 \leq i \leq k$. If $\partial(S_i) \cap \partial(S_j) \neq \emptyset$ for $i \neq j$ then there is an edge G of G with one end in G and the other end in G and G are connected components of G and the other in G since each end of G is in some G (notice that we can include the vertex sets of the even components of G and G in this also, but we are only interested in the odd components).

Theorem 16.13. Tutte's Theorem

Theorem 16.13. Tutte's Theorem

Theorem 16.13. Tutte's Theorem.

A graph G has a perfect matching if and only if $o(G - S) \le |S|$ for all $S \subseteq V$.

Proof. By Lemma 16.3.A, we have for any matching M of G that $|U| \ge o(G-S) - |S|$ where U is the set of vertices of G not covered by M and S is any subset of V. For a perfect matching we have $U = \emptyset$, so that $o(G-S) \le |S|$ for all $S \subseteq V$ so that the equation is a necessary condition for the existence of perfect matching.

Conversely, let G be a graph that has no perfect matching. Consider a maximum matching M^* of G, and denote by U the set of vertices of G not covered by M^* . By the Tutte-Berge Theorem (Theorem 16.11) G has a barrier $B\subseteq V$ where 0(G-B)-|B|=|U|. Because M^* is not a perfect matching then $|U|\geq 1$. Thus $o(G-B)=|B|+|U|\geq |B|+1$ so that the equation is violated. We have shown the contrapositive of the converse, so that the claim holds.

July 1, 2022

Theorem 16.14. Petersen's Theorem

Theorem 16.14. Petersen's Theorem (continued)

Theorem 16.14. Petersen's Theorem.

Every 3-regular graph without cut edges has a perfect matching.

Proof (continued). Therefore the $\partial(S_i)$ are pairwise disjoint and each $\partial(S_i)$ must be contained in $\partial(S)$. We now have

$$3k \leq \sum_{i=1}^k d(S_i) = d\left(\bigcup_{i=1}^k S_i\right) \leq d(S) \leq 3|S|$$

where the last inequality follows from the 3-regular hypothesis. Hence $k \le |S|$ and so $k = o(G - S) \le |S|$. Since S is an arbitrary subset of V, by Tutte's Theorem (Theorem 16.13) G has a perfect matching, as claimed.

 Graph Theory
 July 1, 2022
 4 / 5
 ()
 Graph Theory
 July 1, 2022
 5 /