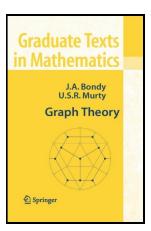
Graph Theory

Chapter 16. Matchings

16.4. Perfect Matchings and Factors—Proofs of Theorems



Theorem 16.13. Tutte's Theorem

Theorem 16.13. Tutte's Theorem. A graph G has a perfect matching if and only if $o(G - S) \le |S|$ for all $S \subseteq V$.

Proof. By Lemma 16.3.A, we have for any matching M of G that $|U| \ge o(G - S) - |S|$ where U is the set of vertices of G not covered by M and S is any subset of V. For a perfect matching we have $U = \emptyset$, so that $o(G - S) \le |S|$ for all $S \subseteq V$ so that the equation is a necessary condition for the existence of perfect matching.

Graph Theory

Theorem 16.13. Tutte's Theorem

Theorem 16.13. Tutte's Theorem.

A graph G has a perfect matching if and only if $o(G - S) \le |S|$ for all $S \subseteq V$.

Proof. By Lemma 16.3.A, we have for any matching M of G that $|U| \ge o(G - S) - |S|$ where U is the set of vertices of G not covered by M and S is any subset of V. For a perfect matching we have $U = \emptyset$, so that $o(G - S) \le |S|$ for all $S \subseteq V$ so that the equation is a necessary condition for the existence of perfect matching.

Conversely, let G be a graph that has no perfect matching. Consider a maximum matching M^* of G, and denote by U the set of vertices of G not covered by M^* . By the Tutte-Berge Theorem (Theorem 16.11) G has a barrier $B \subseteq V$ where 0(G - B) - |B| = |U|. Because M^* is not a perfect matching then $|U| \ge 1$. Thus $o(G - B) = |B| + |U| \ge |B| + 1$ so that the equation is violated. We have shown the contrapositive of the converse, so that the claim holds.

()

Theorem 16.13. Tutte's Theorem

Theorem 16.13. Tutte's Theorem.

A graph G has a perfect matching if and only if $o(G - S) \le |S|$ for all $S \subseteq V$.

Proof. By Lemma 16.3.A, we have for any matching M of G that $|U| \ge o(G - S) - |S|$ where U is the set of vertices of G not covered by M and S is any subset of V. For a perfect matching we have $U = \emptyset$, so that $o(G - S) \le |S|$ for all $S \subseteq V$ so that the equation is a necessary condition for the existence of perfect matching.

Conversely, let G be a graph that has no perfect matching. Consider a maximum matching M^* of G, and denote by U the set of vertices of G not covered by M^* . By the Tutte-Berge Theorem (Theorem 16.11) G has a barrier $B \subseteq V$ where 0(G - B) - |B| = |U|. Because M^* is not a perfect matching then $|U| \ge 1$. Thus $o(G - B) = |B| + |U| \ge |B| + 1$ so that the equation is violated. We have shown the contrapositive of the converse, so that the claim holds.

- (

Theorem 16.14. Petersen's Theorem.

Every 3-regular graph without cut edges has a perfect matching.

Proof. Let *G* be a 3-regular graph without cut edges. Let $S \subseteq V$. Let the certex sets of the odd components of G - S be S_1, S_2, \ldots, S_k . Recall from Section 2.5. Edge Cuts and Bonds that for $X \subseteq V$ we have $d(X) = |\partial(X)|$ where $\partial(X)$ is the coboundary (or "edge cut") of set *X* (i.e., the edges of *G* with exactly one end in *X*). In *G*, if $d(S_i) = 1$ then the one edge in $\partial(S_i)$ is a cut edge of *G*. Since *G* has no cut edges, then $d(S_i) \ge 2$ for each $1 \le i \le k$. Since $|S_i|$ is odd, then by Exercise 2.5.5 $d(S_i)$ is odd for $1 \le i \le k$.

Graph Theory

Theorem 16.14. Petersen's Theorem.

Every 3-regular graph without cut edges has a perfect matching.

Proof. Let G be a 3-regular graph without cut edges. Let $S \subseteq V$. Let the certex sets of the odd components of G - S be S_1, S_2, \ldots, S_k . Recall from Section 2.5. Edge Cuts and Bonds that for $X \subseteq V$ we have $d(X) = |\partial(X)|$ where $\partial(X)$ is the coboundary (or "edge cut") of set X (i.e., the edges of G with exactly one end in X). In G, if $d(S_i) = 1$ then the one edge in $\partial(S_i)$ is a cut edge of G. Since G has no cut edges, then $d(S_i) \ge 2$ for each $1 \le i \le k$. Since $|S_i|$ is odd, then by Exercise 2.5.5 $d(S_i)$ is odd for $1 \leq i \leq k$. Therefore, $d(S_i) \geq 3$ for $1 \leq i \leq k$. If $\partial(S_i) \cap \partial(S_i) \neq \emptyset$ for $i \neq j$ then there is an edge e of G with one end in S_i and the other end in S_i . But S_i and S_i are connected components of G - S so e cannot be in E(G - S); also, e cannot be in E(S) or E[G - S, S] (edges with one end in G - S and the other in S) since each end of e is in some S_i (notice that we can include the vertex sets of the even components of G - S in this also, but we are only interested in the odd components).

0

Theorem 16.14. Petersen's Theorem.

Every 3-regular graph without cut edges has a perfect matching.

Proof. Let G be a 3-regular graph without cut edges. Let $S \subseteq V$. Let the certex sets of the odd components of G - S be S_1, S_2, \ldots, S_k . Recall from Section 2.5. Edge Cuts and Bonds that for $X \subseteq V$ we have $d(X) = |\partial(X)|$ where $\partial(X)$ is the coboundary (or "edge cut") of set X (i.e., the edges of G with exactly one end in X). In G, if $d(S_i) = 1$ then the one edge in $\partial(S_i)$ is a cut edge of G. Since G has no cut edges, then $d(S_i) \ge 2$ for each $1 \le i \le k$. Since $|S_i|$ is odd, then by Exercise 2.5.5 $d(S_i)$ is odd for $1 \leq i \leq k$. Therefore, $d(S_i) \geq 3$ for $1 \leq i \leq k$. If $\partial(S_i) \cap \partial(S_i) \neq \emptyset$ for $i \neq j$ then there is an edge e of G with one end in S_i and the other end in S_i . But S_i and S_i are connected components of G - S so e cannot be in E(G-S); also, e cannot be in E(S) or E[G-S,S] (edges with one end in G - S and the other in S) since each end of e is in some S_i (notice that we can include the vertex sets of the even components of G - S in this also, but we are only interested in the odd components).

C

Theorem 16.14. Petersen's Theorem (continued)

Theorem 16.14. Petersen's Theorem.

Every 3-regular graph without cut edges has a perfect matching.

Proof (continued). Therefore the $\partial(S_i)$ are pairwise disjoint and each $\partial(S_i)$ must be contained in $\partial(S)$. We now have

$$3k \leq \sum_{i=1}^{k} d(S_i) = d\left(\bigcup_{i=1}^{k} S_i\right) \leq d(S) \leq 3|S|$$

where the last inequality follows from the 3-regular hypothesis. Hence $k \leq |S|$ and so $k = o(G - S) \leq |S|$. Since S is an arbitrary subset of V, by Tutte's Theorem (Theorem 16.13) G has a perfect matching, as claimed.