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Theorem 16.13. Tutte’s Theorem

Theorem 16.13. Tutte’s Theorem

Theorem 16.13. Tutte’s Theorem.
A graph G has a perfect matching if and only if o(G − S) ≤ |S | for all
S ⊆ V .

Proof. By Lemma 16.3.A, we have for any matching M of G that
|U| ≥ o(G − S)− |S | where U is the set of vertices of G not covered by
M and S is any subset of V . For a perfect matching we have U = ∅, so
that o(G − S) ≤ |S | for all S ⊆ V so that the equation is a necessary
condition for the existence of perfect matching.

Conversely, let G be a graph that has no perfect matching. Consider a
maximum matching M∗ of G , and denote by U the set of vertices of G
not covered by M∗. By the Tutte-Berge Theorem (Theorem 16.11) G has
a barrier B ⊆ V where 0(G −B)− |B| = |U|. Because M∗ is not a perfect
matching then |U| ≥ 1. Thus o(G − B) = |B|+ |U| ≥ |B|+ 1 so that the
equation is violated. We have shown the contrapositive of the converse, so
that the claim holds.
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Theorem 16.14. Petersen’s Theorem.
Every 3-regular graph without cut edges has a perfect matching.

Proof. Let G be a 3-regular graph without cut edges. Let S ⊆ V . Let the
certex sets of the odd components of G − S be S1,S2, . . . ,Sk . Recall from
Section 2.5. Edge Cuts and Bonds that for X ⊆ V we have d(X ) = |∂(X )|
where ∂(X ) is the coboundary (or “edge cut”) of set X (i.e., the edges of
G with exactly one end in X ). In G , if d(Si ) = 1 then the one edge in
∂(Si ) is a cut edge of G . Since G has no cut edges, then d(Si ) ≥ 2 for
each 1 ≤ i ≤ k. Since |Si | is odd, then by Exercise 2.5.5 d(Si ) is odd for
1 ≤ i ≤ k.

Therefore, d(Si ) ≥ 3 for 1 ≤ i ≤ k. If ∂(Si ) ∩ ∂(Sj) 6= ∅ for
i 6= j then there is an edge e of G with one end in Si and the other end in
Sj . But Si and Sj are connected components of G − S so e cannot be in
E (G − S); also, e cannot be in E (S) or E [G − S ,S ] (edges with one end
in G − S and the other in S) since each end of e is in some Si (notice that
we can include the vertex sets of the even components of G − S in this
also, but we are only interested in the odd components).
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Theorem 16.14. Petersen’s Theorem (continued)

Theorem 16.14. Petersen’s Theorem.
Every 3-regular graph without cut edges has a perfect matching.

Proof (continued). Therefore the ∂(Si ) are pairwise disjoint and each
∂(Si ) must be contained in ∂(S). We now have

3k ≤
k∑

i=1

d(Si ) = d

(
k⋃
·

i=1

Si

)
≤ d(S) ≤ 3|S |

where the last inequality follows from the 3-regular hypothesis. Hence
k ≤ |S | and so k = o(G − S) ≤ |S |. Since S is an arbitrary subset of V ,
by Tutte’s Theorem (Theorem 16.13) G has a perfect matching, as
claimed.
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