Graph Theory

Chapter 17. Edge Colourings 17.1. Edge Chromatic Number—Proofs of Theorems

Table of contents

Theorem 17.2

Theorem 17.2. If G is bipartite, then $\chi' = \Delta$.

Proof. We give an inductive proof on the number of edges m. If G has one edge then $\Delta = 1$ and trivially $\chi' = 1$. For the induction hypothesis, suppose that every bipartite graph with m = k edges, where $k \ge 1$, satisfies the theorem.

Theorem 17.2

Theorem 17.2. If G is bipartite, then $\chi' = \Delta$.

Proof. We give an inductive proof on the number of edges m. If G has one edge then $\Delta = 1$ and trivially $\chi' = 1$. For the induction hypothesis, suppose that every bipartite graph with m = k edges, where $k \ge 1$, satisfies the theorem.

Now let G be a graph with m = k + 1 edges. Let e = uv be an edge of G. By the induction hypothesis, $H = G \setminus e$ (with k - 1 = m edges) has a Δ -edge-colouring $\{M_1, M_2, \ldots, M_{\Delta}\}$. If some colour is available for e then that colour can be assigned to e to yield a Δ -edge-colouring of G and the induction step is verified. So we may assume that no colour is available for e, so that each of the colours $1, 2, \ldots, \Delta$ is represented either at u or at v. Since the degree of u in $G \setminus e$ is at most $\Delta - 1$ then at least one colour i is available at u. Since colour i is not available for e then i is represented at v. Similarly, at least one colour $j \neq i$ is available at v and represented at u.

Theorem 17.2

Theorem 17.2. If G is bipartite, then $\chi' = \Delta$.

Proof. We give an inductive proof on the number of edges m. If G has one edge then $\Delta = 1$ and trivially $\chi' = 1$. For the induction hypothesis, suppose that every bipartite graph with m = k edges, where $k \ge 1$, satisfies the theorem.

Now let G be a graph with m = k + 1 edges. Let e = uv be an edge of G. By the induction hypothesis, $H = G \setminus e$ (with k - 1 = m edges) has a Δ -edge-colouring $\{M_1, M_2, \ldots, M_{\Delta}\}$. If some colour is available for e then that colour can be assigned to e to yield a Δ -edge-colouring of G and the induction step is verified. So we may assume that no colour is available for e, so that each of the colours $1, 2, \ldots, \Delta$ is represented either at u or at v. Since the degree of u in $G \setminus e$ is at most $\Delta - 1$ then at least one colour i is available at u. Since colour i is not available for e then i is represented at v. Similarly, at least one colour $j \neq i$ is available at v and represented at u.

Theorem 17.2 (continued)

Proof (continued). Consider the subgraph $H_{ii} = H[M_i \cup M_i]$. Since *i* is available at u and j is represented at u, then u is of degree one in H_{ii} . By Note/Definition 17.1.B, H_{ii} can be decomposed into even length cycles and paths. So the component of H_{ij} containing u must be an ij-path P. Notice that P cannot terminate at v since this would imply that P is even length since it tarts at u with an edge in E_i and ends at v with an edge in E_i . But $e = uv \in E(G)$ and we could then add edge e = uv to the *ij*-path creating an odd length cycle in bipartite graph G, an impossibility. So we can interchange the colours i and j on component P of H_{ii} to get an edge colouring of the edges in H_{ii} (though the elements of M_i and M_i are modified) such that colour *i* is available at both u and v. This gives a Δ -edge-colouring of $G \setminus e$. Since colour *i* is available at both ends of e = uv, then colour *i* is available for edge *e*, giving a Δ -edge-colouring of G. Since $\chi' \geq \Delta$, then for bipartite G we have $\chi' = \Delta$. This establishes the induction step, and hence by mathematical induction the result holds for all bipartite graphs.

()

Theorem 17.2 (continued)

Proof (continued). Consider the subgraph $H_{ii} = H[M_i \cup M_i]$. Since *i* is available at u and j is represented at u, then u is of degree one in H_{ii} . By Note/Definition 17.1.B, H_{ii} can be decomposed into even length cycles and paths. So the component of H_{ii} containing *u* must be an *ij*-path *P*. Notice that P cannot terminate at v since this would imply that P is even length since it tarts at u with an edge in E_i and ends at v with an edge in E_i . But $e = uv \in E(G)$ and we could then add edge e = uv to the *ij*-path creating an odd length cycle in bipartite graph G, an impossibility. So we can interchange the colours i and j on component P of H_{ii} to get an edge colouring of the edges in H_{ii} (though the elements of M_i and M_i are modified) such that colour *i* is available at both u and v. This gives a Δ -edge-colouring of $G \setminus e$. Since colour *i* is available at both ends of e = uv, then colour *i* is available for edge *e*, giving a Δ -edge-colouring of G. Since $\chi' \geq \Delta$, then for bipartite G we have $\chi' = \Delta$. This establishes the induction step, and hence by mathematical induction the result holds for all bipartite graphs.

C