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Lemma 17.3

Lemma 17.3

Lemma 17.3. Let G be a simple graph, v a vertex of G, e an edge of G
incident to v, and k an integer with kK > A. Suppose that G \ e has a

k-edge-colouring ¢ with respect to which every neighbor of v has at least
one available colour. Then G is k-edge-colourable.
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Lemma 17.3

Lemma 17.3. Let G be a simple graph, v a vertex of G, e an edge of G
incident to v, and k an integer with kK > A. Suppose that G \ e has a
k-edge-colouring ¢ with respect to which every neighbor of v has at least
one available colour. Then G is k-edge-colourable.

Proof. Consider FIRST the k-edge colouring ¢ of G \ e. With v as the
vertex given in the statement of the lemma, let X = Ng(v) and let
Y ={1,2,..., k} be the colours in the k-edge-colouring of G \ e.
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Lemma 17.3

Lemma 17.3. Let G be a simple graph, v a vertex of G, e an edge of G
incident to v, and k an integer with kK > A. Suppose that G \ e has a
k-edge-colouring ¢ with respect to which every neighbor of v has at least
one available colour. Then G is k-edge-colourable.

Proof. Consider FIRST the k-edge colouring ¢ of G \ e. With v as the
vertex given in the statement of the lemma, let X = Ng(v) and let

Y ={1,2,..., k} be the colours in the k-edge-colouring of G \ e.
SECOND consider the bipartite graph H[X, Y] where x € X and i € Y
are adjacent if and only if colour i is available at vertex x in the restriction
¢ of colouring ¢ to G — v (notice that G — v is a subgraph of G \ e). We
now look for a matching of H. For all x € X \ {u}, where u is the other
end of e (i.e., e = uv), the colour of the edge xv is available at x in G — v
(since edge xv is not in G — v). So H includes an edge joining x and the
colour of edge xv (denoted c(xv)).
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Lemma 17.3

Lemma 17.3 (continued 1)

Proof (continued). So H contains the matching
M = {(x, c(xv)) | x € X \ {u}}; since the original k edge-colouring is

proper, the colours c(xv) for x € X \ {u} are all different, then M actually
is a matching.

Y%
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Lemma 17.3 (continued 1)

Proof (continued). So H contains the matching
M = {(x, c(xv)) | x € X \ {u}}; since the original k edge-colouring is

proper, the colours c(xv) for x € X \ {u} are all different, then M actually
is a matching.

Conversely, every matching in H effectively 1
assigns colours to the vertices of X which 2
are covered by the matching. This gives a

partial colouring of the coboundary 9(v) that i =red
is compatible with colouring € of G — v N

(since colours assigned to edges of d(v) are 4

based on the available colours for those edges; X= \c(v) %k

this is how H is defined).
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Lemma 17.3 (continued 1)

Proof (continued). So H contains the matching
M = {(x, c(xv)) | x € X \ {u}}; since the original k edge-colouring is

proper, the colours c(xv) for x € X \ {u} are all different, then M actually
is a matching.

Conversely, every matching in H effectively 1
assigns colours to the vertices of X which 2
are covered by the matching. This gives a

partial colouring of the coboundary 9(v) that i =red
is compatible with colouring € of G — v N

(since colours assigned to edges of d(v) are 4

based on the available colours for those edges; X= \c(v) %k

this is how H is defined).

IF a matching of H saturates X (that is, covers all the vertices of

X = Ng(v)) then all edges of 9(v) can be coloured in a way that is
compatible with k-edge-colouring & of G — v, giving a k-edge-colouring of
G, as claimed.
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Lemma 17.3

Lemma 17.3 (continued 2)

Proof (continued). We will modify the matching M which covers all
vertices of X except for u, to give a new colouring ¢’ which then gives a
new bipartite graph H’; we'll show that H’ does contain a matching
saturating X and the claim then follows.
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Lemma 17.3 (continued 2)

Proof (continued). We will modify the matching M which covers all
vertices of X except for u, to give a new colouring ¢’ which then gives a
new bipartite graph H’; we'll show that H’ does contain a matching
saturating X and the claim then follows.

By hypothesis, there is at least one colour available to each neighbor of v
in the k-edge-colouring ¢ of G\ e, so this gives each vertex x € X a
degree at least one in H[X, Y]. In addition, the colour c(xv) is available
at vertex x in colouring ¢ of G — v (though c(xv) is not available at x in
the colouring ¢ of G \ e). So each vertex of x € X \ {u} is of degree at
least two in H[X, Y], and so each vertex of X \ {u} is incident with at
least one vertex of H\ M. Now for vertex u € X, we have

do\e(u) = dg(u) —1since e = uv € E(G)
< A(G)-1
< k—1since A<y <k

Graph Theory Wl g B



Lemma 17.3

Lemma 17.3 (continued 3)

Proof (continued). Hence, u is also incident with at least one vertex of
H\ M (and by definition of M, u is incident with no edges of M).

Therefore, each vertex of X is incident with at least one edge of H\ M.
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Lemma 17.3 (continued 3)

Proof (continued). Hence, u is also incident with at least one vertex of
H\ M (and by definition of M, u is incident with no edges of M).
Therefore, each vertex of X is incident with at least one edge of H\ M.

We now follow some of the steps of the proof of Hall's Theorem (Theorem
16.4). Denote by Z the set of all vertices of H reachable from u by
M-alternating paths (that is, paths that are alternately in M and in

H\ M). Since matching M does not cover u, then each M-alternating
path starting at u starts with an edge of H\ M. Set R = X N Z and

B =Y NZ (so that R is a set of vertices adjacent to v in G and B is a
set of colours). The vertices of R\ {u} are matched under M with the
vertices of B (because of the M-alternating path definition of Z). This
implies a bijection between R\ {u} and B so that |B| = |R| — 1. Now the
neighbors of vertices in R include all vertices in B; that is, Ny(R) 2 B.
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Lemma 17.3 (continued 4)

Proof (continued). In fact, every vertex r in R is connected by an
M-alternating path to u (starting at u with an edge in H\ M and ending
with an edge in M) so if r is joined to a vertex w of H by an edge in

H\ M then there is an M-alternating path from u to w and so w € B.
Notice that this is the only edge of M incident to r (since M is a
matching), so the predecessor of r in the M-alternating path from u to r is
the only neighbor of r joined to r by an edge of M; of course this neighbor
of risin B. Since r is an arbitrary vertex in R, then Ny(R) C B and
hence Ny(R) = B. We now have |Ny(R)| = |B| = |R| — 1.
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Lemma 17.3 (continued 4)

Proof (continued). In fact, every vertex r in R is connected by an
M-alternating path to u (starting at u with an edge in H\ M and ending
with an edge in M) so if r is joined to a vertex w of H by an edge in

H\ M then there is an M-alternating path from u to w and so w € B.
Notice that this is the only edge of M incident to r (since M is a
matching), so the predecessor of r in the M-alternating path from u to r is
the only neighbor of r joined to r by an edge of M; of course this neighbor
of risin B. Since r is an arbitrary vertex in R, then Ny(R) C B and
hence Ny(R) = B. We now have |Ny(R)| = |B| = |R| — 1. Now each
vertex of R is incident with at least one edge of H\ M (as described
above; see slide “Continued 3") so that we have the |R| vertices of R
joined to the |R| — 1 vertices of Ny(R) by at least |R| edges of H\ M.
Therefore (by the Pigeonhole Principle) some two vertices x and y of R
are adjacent in H\ M to a common colour i € B. By the definition of
bipartite H, this means that colour i is available at both vertices x and y.
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Lemma 17.3 (continued 5)

Proof (continued). Notice every colour in B is represented (in G) at
vertex v because B is matched (in H) under M with R\ {u} (see the
figure above). In particular, colour i is represented at vertex v. Because
the degree of v in G \ e is at most k — 1 (recall that v is an end of e),
some colour j # i is available (in G\ e) at v. Since every colour in B C Y
is represented at v, then j & B. If j is available to any vertex r € R then
by the definition of H = H[X, Y], r and j are adjacent in H. But then

J € Nu(R) = B (since Ny(R) = B, as shown on slide “Continued 4"),
contradicting j ¢ B. Thus j is not adjacent to (that is, j is represented at)
every vertex of R; in particular j is represented at both x and y.
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Lemma 17.3 (continued 5)

Proof (continued). Notice every colour in B is represented (in G) at
vertex v because B is matched (in H) under M with R\ {u} (see the
figure above). In particular, colour i is represented at vertex v. Because
the degree of v in G \ e is at most k — 1 (recall that v is an end of e),
some colour j # i is available (in G\ e) at v. Since every colour in B C Y
is represented at v, then j & B. If j is available to any vertex r € R then
by the definition of H = H[X, Y], r and j are adjacent in H. But then

J € Nu(R) = B (since Ny(R) = B, as shown on slide “Continued 4"),
contradicting j ¢ B. Thus j is not adjacent to (that is, j is represented at)
every vertex of R; in particular j is represented at both x and y.

We now exit our discussion of bipartite graph H and return to
consideration of graph G \ e. We are interested in vertices v, x, and y. To
summarize, we know that: colour i is represented at v and colour j is
available at v, and colour i is available at both x and y and colour j is
represented at both x and y.
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Lemma 17.3 (continued 6)

Proof (continued). With M; and M; as the sets of edges of assigned
colours i and j, respectively, define H;; = H[M; U M;]. Notice that

du;(v) = du,;(x) = du,(y) = 1. By Note/Definition 17.1.B, the connected
components of Hj; are even length cycles and paths. So each of the
vertices v, x, and y are ends of path components of Hj; (i.e., ends of
ij-paths). The jj-path starting at v cannot end at both vertex x and vertex
y, so we can assume that it does not end at y (or else, interchange x and
y). Let z be the terminal vertex of the jj-path P starting at vertex y
(THIRD).
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Lemma 17.3 (continued 6)

Proof (continued). With M; and M; as the sets of edges of assigned
colours i and j, respectively, define H;; = H[M; U M;]. Notice that

du;(v) = du,;(x) = du,(y) = 1. By Note/Definition 17.1.B, the connected
components of Hj; are even length cycles and paths. So each of the
vertices v, x, and y are ends of path components of Hj; (i.e., ends of
ij-paths). The jj-path starting at v cannot end at both vertex x and vertex
y, so we can assume that it does not end at y (or else, interchange x and
y). Let z be the terminal vertex of the jj-path P starting at vertex y
(THIRD). Next, interchange the colours i and j on P. Since P is a
connected component of Hjj = H[M; U Mj], then this interchanging of
colours causes no conflict of colours (certainly no conflict at interior points
of P, but also no conflict at the ends y and z). So this gives FOURTH a
new colouring ¢’ of G\ e.
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Lemma 17.3

Lemma 17.3 (continued 7)

Proof (continued). FIFTH, let H'[X, Y], where X = Ng(v) and

Y ={1,2,...,k}, be the bipartite graph corresponding to ¢’; that is,

x € X and i € Y are adjacent if colour / is available at vertex x in the
restriction &’ of ¢’ to G — v. With respect to colouring &’ the same colours
are available at each vertex of X except at end vertex y of the jj-path and
the end vertex z of the ij-path. However, vertex z may or may not be in
X = Ng(v). Therefore the only differences in the edge sets of

H = H[X,Y] and H = H'[X, Y] occur at y and possibly at z (if z € X).
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Lemma 17.3 (continued 7)

Proof (continued). FIFTH, let H'[X, Y], where X = Ng(v) and

Y ={1,2,...,k}, be the bipartite graph corresponding to ¢’; that is,

x € X and i € Y are adjacent if colour / is available at vertex x in the
restriction &’ of ¢’ to G — v. With respect to colouring &’ the same colours
are available at each vertex of X except at end vertex y of the jj-path and
the end vertex z of the ij-path. However, vertex z may or may not be in
X = Ng(v). Therefore the only differences in the edge sets of

H = H[X,Y] and H = H'[X, Y] occur at y and possibly at z (if z € X).
Now vertex v does not lie on ij-path P because colour j is not represented
at v and v is not an end of the path (the ends are y and z). Thus the
colours represented at v in colourings ¢ and ¢’ are the same. Hence the
colours available to vertices of X = Ng(v) are the same in colourings &
and &’ of G — v. So matching

M = {(x,c(xv)) | x € X\ {u}} = {(x,c'(w)) [ x € X\ {u}}

of H is also a matching of H'.

Graph Theory TR



Lemma 17.3 (continued 8)

Proof (continued). Now vertex y is in R = X N Z by choice and so (by
the definition of Z) y is reachable from u by an M-alternating path @ in
H. We use Q to find an M-augmenting path Q' in H' by considering two
cases based on the location of vertex z (the terminal vertex of the jj-path
P in G\ e starting at y).
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Lemma 17.3 (continued 8)

Proof (continued). Now vertex y is in R = X N Z by choice and so (by
the definition of Z) y is reachable from u by an M-alternating path @ in
H. We use Q to find an M-augmenting path Q' in H' by considering two
cases based on the location of vertex z (the terminal vertex of the jj-path
P in G\ e starting at y).

Case 1. Suppose z lies on Q. Then z € X (since Q is a path in

H = H[X,Y]) and z € Z (since it is then reachable from u by an
M-alternating path) and hence z € R = X N Z. Since M is a matching in
H' also, then uQz is an M-alternating path in H' (since z # y then the
fact that H' and H differ in that (y,j) € E(H), (y,i) ¢ E(H) but

(y,i) € E(H'), (v,j) & E(H') is not an issue; at the other end, since

H" = H'[X, Y] is bipartite with u,z € X and uQz starts with an edge not
in M, then uQz ends with an edge in M).
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Lemma 17.3 (continued 9)

Proof (continued). Since z € R then, as shown above (see the
“Continued 5" slide) j is represented at z in G \ e. Now i cannot also be
represented at z, or else the ij-path P (a connected component of

Hijj = H[M; U M;]) could be extended beyond z. So the ij-path P from y
to z must have originally (that is in colouring c, before the colours i and j
were interchanged in P) terminated at z in an edge of colour j. Then,
with respect to the colouring ¢’, the colour j is available at z so that (z, )
is an edge of H'. Then Q' = uQz is an M-augmenting path in H'.
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Lemma 17.3 (continued 9)

Proof (continued). Since z € R then, as shown above (see the
“Continued 5" slide) j is represented at z in G \ e. Now /i cannot also be
represented at z, or else the ij-path P (a connected component of

Hijj = H[M; U M;]) could be extended beyond z. So the ij-path P from y
to z must have originally (that is in colouring c, before the colours i and j
were interchanged in P) terminated at z in an edge of colour j. Then,
with respect to the colouring ¢’, the colour j is available at z so that (z, )
is an edge of H'. Then Q' = uQz is an M-augmenting path in H'.

Case 2. Suppose that z does not lie on Q. Since j is represented at y in
colouring ¢ (and i is not) then in colour ¢’, i is represented at y (and j is
not). That is, colour j is available at vertex y with respect to colouring ¢’

and so (y,J) is an edge of H'. So Q" = uQyj is an M-augmenting path in
H'.

In both cases, Q@ is an odd length path (it starts at a vertex of X and
ends at a vertex of Y).
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Lemma 17.3 (continued 10)

Lemma 17.3. Let G be a simple graph, v a vertex of G, e and edge of G
incident to v, and k an integer with kK > A. Suppose that G \ e has a
k-edge-colouring ¢ with respect to which every neighbor of v has at least
one available colour. Then G is k-edge-colourable.

Proof (continued). Finally, set M' = MAE(Q') (so that this is the
matching M of H’, but with the edges of M-augmenting path Q" which are
in M replaced with the edges of Q' that are not in M). Since Q' = uQyj
is an odd length M-augmenting path starting and ending with edges not in
M, this results in a net gain of one edge and includes an edge with v as an
end in M" (SIXTH). So M’ saturates X and, as commented above, this
results in a colouring of d(v) that is compatible with &’, the restriction of

¢’ to G — v. This gives the k-edge-colouring of G, as desired. O
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Theorem 17.4. Vizing's Theorem

Theorem 17.4. Vizing’s Theorem.
For any simple graph G, ¥/ < A +1.
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Theorem 17.4. Vizing's Theorem

Theorem 17.4. Vizing’s Theorem.
For any simple graph G, ¥/ < A +1.

Proof. We give an inductive proof on the number of edges m of G. For
the base case m =1, G has one edge, and A = 1. So G has a 1-edge
colouring and hence 1 = x/ < A +1 = 2. For the induction hypothesis,
suppose that all simple graphs on m = ¢ edges have chromatic number
Y <A+1.
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Theorem 17.4. Vizing's Theorem

Theorem 17.4. Vizing’s Theorem.
For any simple graph G, ¥/ < A +1.

Proof. We give an inductive proof on the number of edges m of G. For
the base case m =1, G has one edge, and A = 1. So G has a 1-edge
colouring and hence 1 = x/ < A +1 = 2. For the induction hypothesis,
suppose that all simple graphs on m = ¢ edges have chromatic number
Y <A+1.

Now consider G a simple graph on m = £ + 1 edges. For e any edge of G,
we have that G \ e is a graph on m = (¢ + 1) — 1 = ¢ edges. Let v be one
end of e. By the induction hypothesis, xX'(G \ €) < A(G \ €) + 1. Since
A(G\ e) < A(G), we have X'(G\ e) < A(G)+1. With k = A(G)+1, we
then have (by the definition of x'(G \ e)) that there is a k-edge-colouring
of G\ e. Since k =A(G)+1>A(G\e)+1>dg (u) for all

u € V(G \ e), then each vertex of G \ e has at least one available colour.
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Theorem 17.4. Vizing's Theorem

Theorem 17.4. Vizing's Theorem (continued)

Theorem 17.4. Vizing’'s Theorem.
For any simple graph G, Y/ < A +1.

Proof. In particular, each neighbor of v in G has at least one available
colour. By Lemma 17.3, G has a k-edge-colouring. Therefore

X'(G) < k = A(G) + 1. This establishes the induction step. Therefore, by
mathematical induction, the claim holds for all simple graphs. []
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