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Lemma 17.3

Lemma 17.3

Lemma 17.3. Let G be a simple graph, v a vertex of G , e an edge of G
incident to v , and k an integer with k ≥ ∆. Suppose that G \ e has a
k-edge-colouring c with respect to which every neighbor of v has at least
one available colour. Then G is k-edge-colourable.

Proof. Consider FIRST the k-edge colouring c of G \ e. With v as the
vertex given in the statement of the lemma, let X = NG (v) and let
Y = {1, 2, . . . , k} be the colours in the k-edge-colouring of G \ e.

SECOND consider the bipartite graph H[X ,Y ] where x ∈ X and i ∈ Y
are adjacent if and only if colour i is available at vertex x in the restriction
c̃ of colouring c to G − v (notice that G − v is a subgraph of G \ e). We
now look for a matching of H. For all x ∈ X \ {u}, where u is the other
end of e (i.e., e = uv), the colour of the edge xv is available at x in G − v
(since edge xv is not in G − v). So H includes an edge joining x and the
colour of edge xv (denoted c(xv)).
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Lemma 17.3

Lemma 17.3 (continued 1)

Proof (continued). So H contains the matching
M = {(x , c(xv)) | x ∈ X \ {u}}; since the original k edge-colouring is
proper, the colours c(xv) for x ∈ X \ {u} are all different, then M actually
is a matching.

Conversely, every matching in H effectively
assigns colours to the vertices of X which
are covered by the matching. This gives a
partial colouring of the coboundary ∂(v) that
is compatible with colouring c̃ of G − v
(since colours assigned to edges of ∂(v) are
based on the available colours for those edges;
this is how H is defined).

IF a matching of H saturates X (that is, covers all the vertices of
X = NG (v)) then all edges of ∂(v) can be coloured in a way that is
compatible with k-edge-colouring c̃ of G − v , giving a k-edge-colouring of
G , as claimed.
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Lemma 17.3

Lemma 17.3 (continued 2)

Proof (continued). We will modify the matching M which covers all
vertices of X except for u, to give a new colouring c ′ which then gives a
new bipartite graph H ′; we’ll show that H ′ does contain a matching
saturating X and the claim then follows.

By hypothesis, there is at least one colour available to each neighbor of v
in the k-edge-colouring c of G \ e, so this gives each vertex x ∈ X a
degree at least one in H[X ,Y ]. In addition, the colour c(xv) is available
at vertex x in colouring c̃ of G − v (though c(xv) is not available at x in
the colouring c of G \ e). So each vertex of x ∈ X \ {u} is of degree at
least two in H[X ,Y ], and so each vertex of X \ {u} is incident with at
least one vertex of H \M. Now for vertex u ∈ X , we have

dG\e(u) = dG (u)− 1 since e = uv ∈ E (G )

≤ ∆(G )− 1

≤ k − 1 since ∆ ≤ χ′ ≤ k.
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Lemma 17.3

Lemma 17.3 (continued 3)

Proof (continued). Hence, u is also incident with at least one vertex of
H \M (and by definition of M, u is incident with no edges of M).
Therefore, each vertex of X is incident with at least one edge of H \M.

We now follow some of the steps of the proof of Hall’s Theorem (Theorem
16.4). Denote by Z the set of all vertices of H reachable from u by
M-alternating paths (that is, paths that are alternately in M and in
H \M). Since matching M does not cover u, then each M-alternating
path starting at u starts with an edge of H \M. Set R = X ∩ Z and
B = Y ∩ Z (so that R is a set of vertices adjacent to v in G and B is a
set of colours). The vertices of R \ {u} are matched under M with the
vertices of B (because of the M-alternating path definition of Z ). This
implies a bijection between R \ {u} and B so that |B| = |R| − 1. Now the
neighbors of vertices in R include all vertices in B; that is, NH(R) ⊇ B.
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Lemma 17.3

Lemma 17.3 (continued 4)

Proof (continued). In fact, every vertex r in R is connected by an
M-alternating path to u (starting at u with an edge in H \M and ending
with an edge in M) so if r is joined to a vertex w of H by an edge in
H \M then there is an M-alternating path from u to w and so w ∈ B.
Notice that this is the only edge of M incident to r (since M is a
matching), so the predecessor of r in the M-alternating path from u to r is
the only neighbor of r joined to r by an edge of M; of course this neighbor
of r is in B. Since r is an arbitrary vertex in R, then NH(R) ⊆ B and
hence NH(R) = B. We now have |NH(R)| = |B| = |R| − 1. Now each
vertex of R is incident with at least one edge of H \M (as described
above; see slide “Continued 3”) so that we have the |R| vertices of R
joined to the |R| − 1 vertices of NH(R) by at least |R| edges of H \M.
Therefore (by the Pigeonhole Principle) some two vertices x and y of R
are adjacent in H \M to a common colour i ∈ B. By the definition of
bipartite H, this means that colour i is available at both vertices x and y .
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Lemma 17.3

Lemma 17.3 (continued 5)

Proof (continued). Notice every colour in B is represented (in G ) at
vertex v because B is matched (in H) under M with R \ {u} (see the
figure above). In particular, colour i is represented at vertex v . Because
the degree of v in G \ e is at most k − 1 (recall that v is an end of e),
some colour j 6= i is available (in G \ e) at v . Since every colour in B ⊂ Y
is represented at v , then j 6∈ B. If j is available to any vertex r ∈ R then
by the definition of H = H[X ,Y ], r and j are adjacent in H. But then
j ∈ NH(R) = B (since NH(R) = B, as shown on slide “Continued 4”),
contradicting j 6∈ B. Thus j is not adjacent to (that is, j is represented at)
every vertex of R; in particular j is represented at both x and y .

We now exit our discussion of bipartite graph H and return to
consideration of graph G \ e. We are interested in vertices v , x , and y . To
summarize, we know that: colour i is represented at v and colour j is
available at v , and colour i is available at both x and y and colour j is
represented at both x and y .
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Lemma 17.3

Lemma 17.3 (continued 6)

Proof (continued). With Mi and Mj as the sets of edges of assigned
colours i and j , respectively, define Hij = H[Mi ∪Mj ]. Notice that
dHij

(v) = dHij
(x) = dHij

(y) = 1. By Note/Definition 17.1.B, the connected
components of Hij are even length cycles and paths. So each of the
vertices v , x , and y are ends of path components of Hij (i.e., ends of
ij-paths). The ij-path starting at v cannot end at both vertex x and vertex
y , so we can assume that it does not end at y (or else, interchange x and
y). Let z be the terminal vertex of the ij-path P starting at vertex y
(THIRD). Next, interchange the colours i and j on P. Since P is a
connected component of Hij = H[Mi ∪Mj ], then this interchanging of
colours causes no conflict of colours (certainly no conflict at interior points
of P, but also no conflict at the ends y and z). So this gives FOURTH a
new colouring c ′ of G \ e.
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Lemma 17.3

Lemma 17.3 (continued 7)

Proof (continued). FIFTH, let H ′[X ,Y ], where X = NG (v) and
Y = {1, 2, . . . , k}, be the bipartite graph corresponding to c ′; that is,
x ∈ X and i ∈ Y are adjacent if colour i is available at vertex x in the
restriction c̃ ′ of c ′ to G − v . With respect to colouring c̃ ′ the same colours
are available at each vertex of X except at end vertex y of the ij-path and
the end vertex z of the ij-path. However, vertex z may or may not be in
X = NG (v). Therefore the only differences in the edge sets of
H = H[X ,Y ] and H ′ = H ′[X ,Y ] occur at y and possibly at z (if z ∈ X ).
Now vertex v does not lie on ij-path P because colour j is not represented
at v and v is not an end of the path (the ends are y and z). Thus the
colours represented at v in colourings c and c ′ are the same. Hence the
colours available to vertices of X = NG (v) are the same in colourings c̃
and c̃ ′ of G − v . So matching

M = {(x , c(xv)) | x ∈ X \ {u}} = {(x , c ′(vx)) | x ∈ X \ {u}}

of H is also a matching of H ′.
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Lemma 17.3

Lemma 17.3 (continued 8)

Proof (continued). Now vertex y is in R = X ∩ Z by choice and so (by
the definition of Z ) y is reachable from u by an M-alternating path Q in
H. We use Q to find an M-augmenting path Q ′ in H ′ by considering two
cases based on the location of vertex z (the terminal vertex of the ij-path
P in G \ e starting at y).

Case 1. Suppose z lies on Q. Then z ∈ X (since Q is a path in
H = H[X ,Y ]) and z ∈ Z (since it is then reachable from u by an
M-alternating path) and hence z ∈ R = X ∩ Z . Since M is a matching in
H ′ also, then uQz is an M-alternating path in H ′ (since z 6= y then the
fact that H ′ and H differ in that (y , j) ∈ E (H), (y , i) 6∈ E (H) but
(y , i) ∈ E (H ′), (y , j) 6∈ E (H ′) is not an issue; at the other end, since
H ′ = H ′[X ,Y ] is bipartite with u, z ∈ X and uQz starts with an edge not
in M, then uQz ends with an edge in M).

() Graph Theory July 7, 2022 11 / 14



Lemma 17.3

Lemma 17.3 (continued 8)

Proof (continued). Now vertex y is in R = X ∩ Z by choice and so (by
the definition of Z ) y is reachable from u by an M-alternating path Q in
H. We use Q to find an M-augmenting path Q ′ in H ′ by considering two
cases based on the location of vertex z (the terminal vertex of the ij-path
P in G \ e starting at y).

Case 1. Suppose z lies on Q. Then z ∈ X (since Q is a path in
H = H[X ,Y ]) and z ∈ Z (since it is then reachable from u by an
M-alternating path) and hence z ∈ R = X ∩ Z . Since M is a matching in
H ′ also, then uQz is an M-alternating path in H ′ (since z 6= y then the
fact that H ′ and H differ in that (y , j) ∈ E (H), (y , i) 6∈ E (H) but
(y , i) ∈ E (H ′), (y , j) 6∈ E (H ′) is not an issue; at the other end, since
H ′ = H ′[X ,Y ] is bipartite with u, z ∈ X and uQz starts with an edge not
in M, then uQz ends with an edge in M).

() Graph Theory July 7, 2022 11 / 14



Lemma 17.3

Lemma 17.3 (continued 9)

Proof (continued). Since z ∈ R then, as shown above (see the
“Continued 5” slide) j is represented at z in G \ e. Now i cannot also be
represented at z , or else the ij-path P (a connected component of
Hij = H[Mi ∪Mj ]) could be extended beyond z . So the ij-path P from y
to z must have originally (that is in colouring c , before the colours i and j
were interchanged in P) terminated at z in an edge of colour j . Then,
with respect to the colouring c ′, the colour j is available at z so that (z , j)
is an edge of H ′. Then Q ′ = uQzj is an M-augmenting path in H ′.

Case 2. Suppose that z does not lie on Q. Since j is represented at y in
colouring c (and i is not) then in colour c ′, i is represented at y (and j is
not). That is, colour j is available at vertex y with respect to colouring c ′

and so (y , j) is an edge of H ′. So Q ′ = uQyj is an M-augmenting path in
H ′.

In both cases, Q ′ is an odd length path (it starts at a vertex of X and
ends at a vertex of Y ).
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Lemma 17.3

Lemma 17.3 (continued 10)

Lemma 17.3. Let G be a simple graph, v a vertex of G , e and edge of G
incident to v , and k an integer with k ≥ ∆. Suppose that G \ e has a
k-edge-colouring c with respect to which every neighbor of v has at least
one available colour. Then G is k-edge-colourable.

Proof (continued). Finally, set M ′ = M4E (Q ′) (so that this is the
matching M of H ′, but with the edges of M-augmenting path Q ′ which are
in M replaced with the edges of Q ′ that are not in M). Since Q ′ = uQyj
is an odd length M-augmenting path starting and ending with edges not in
M, this results in a net gain of one edge and includes an edge with u as an
end in M ′ (SIXTH). So M ′ saturates X and, as commented above, this
results in a colouring of ∂(v) that is compatible with c̃ ′, the restriction of
c ′ to G − v . This gives the k-edge-colouring of G , as desired.
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Theorem 17.4. Vizing’s Theorem

Theorem 17.4. Vizing’s Theorem

Theorem 17.4. Vizing’s Theorem.
For any simple graph G , χ′ ≤ ∆ + 1.

Proof. We give an inductive proof on the number of edges m of G . For
the base case m = 1, G has one edge, and ∆ = 1. So G has a 1-edge
colouring and hence 1 = χ′ ≤ ∆ + 1 = 2. For the induction hypothesis,
suppose that all simple graphs on m = ` edges have chromatic number
χ′ ≤ ∆ + 1.

Now consider G a simple graph on m = ` + 1 edges. For e any edge of G ,
we have that G \ e is a graph on m = (` + 1)− 1 = ` edges. Let v be one
end of e. By the induction hypothesis, χ′(G \ e) ≤ ∆(G \ e) + 1. Since
∆(G \ e) ≤ ∆(G ), we have χ′(G \ e) ≤ ∆(G )+1. With k = ∆(G )+1, we
then have (by the definition of χ′(G \ e)) that there is a k-edge-colouring
of G \ e. Since k = ∆(G ) + 1 ≥ ∆(G \ e) + 1 > dG\(u) for all
u ∈ V (G \ e), then each vertex of G \ e has at least one available colour.
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suppose that all simple graphs on m = ` edges have chromatic number
χ′ ≤ ∆ + 1.

Now consider G a simple graph on m = ` + 1 edges. For e any edge of G ,
we have that G \ e is a graph on m = (` + 1)− 1 = ` edges. Let v be one
end of e. By the induction hypothesis, χ′(G \ e) ≤ ∆(G \ e) + 1. Since
∆(G \ e) ≤ ∆(G ), we have χ′(G \ e) ≤ ∆(G )+1. With k = ∆(G )+1, we
then have (by the definition of χ′(G \ e)) that there is a k-edge-colouring
of G \ e. Since k = ∆(G ) + 1 ≥ ∆(G \ e) + 1 > dG\(u) for all
u ∈ V (G \ e), then each vertex of G \ e has at least one available colour.
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Theorem 17.4. Vizing’s Theorem (continued)

Theorem 17.4. Vizing’s Theorem.
For any simple graph G , χ′ ≤ ∆ + 1.

Proof. In particular, each neighbor of v in G has at least one available
colour. By Lemma 17.3, G has a k-edge-colouring. Therefore
χ′(G ) ≤ k = ∆(G ) + 1. This establishes the induction step. Therefore, by
mathematical induction, the claim holds for all simple graphs.
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