Graph Theory

Chapter 17. Edge Colourings

17.2. Vizing's Theorem—Proofs of Theorems

Table of contents

(1) Lemma 17.3
(2) Theorem 17.4. Vizing's Theorem

Lemma 17.3

Lemma 17.3. Let G be a simple graph, v a vertex of G, e an edge of G incident to v, and k an integer with $k \geq \Delta$. Suppose that $G \backslash e$ has a k-edge-colouring c with respect to which every neighbor of v has at least one available colour. Then G is k-edge-colourable.

Proof. Consider FIRST the k-edge colouring c of $G \backslash e$. With v as the vertex given in the statement of the lemma, let $X=N_{G}(v)$ and let $Y=\{1,2, \ldots, k\}$ be the colours in the k-edge-colouring of $G \backslash e$.

Lemma 17.3

Lemma 17.3. Let G be a simple graph, v a vertex of G, e an edge of G incident to v, and k an integer with $k \geq \Delta$. Suppose that $G \backslash e$ has a k-edge-colouring c with respect to which every neighbor of v has at least one available colour. Then G is k-edge-colourable.

Proof. Consider FIRST the k-edge colouring c of $G \backslash e$. With v as the vertex given in the statement of the lemma, let $X=N_{G}(v)$ and let $Y=\{1,2, \ldots, k\}$ be the colours in the k-edge-colouring of $G \backslash e$. SECOND consider the bipartite graph $H[X, Y]$ where $x \in X$ and $i \in Y$ are adjacent if and only if colour i is available at vertex x in the restriction \tilde{c} of colouring c to $G-v$ (notice that $G-v$ is a subgraph of $G \backslash e$). We now look for a matching of H. For all $x \in X \backslash\{u\}$, where u is the other end of e (i.e., $e=u v$), the colour of the edge $x v$ is available at x in $G-v$ (since edge $x v$ is not in $G-v$). So H includes an edge joining x and the colour of edge $x v$ (denoted $c(x v)$).

Lemma 17.3

Lemma 17.3. Let G be a simple graph, v a vertex of G, e an edge of G incident to v, and k an integer with $k \geq \Delta$. Suppose that $G \backslash e$ has a k-edge-colouring c with respect to which every neighbor of v has at least one available colour. Then G is k-edge-colourable.

Proof. Consider FIRST the k-edge colouring c of $G \backslash e$. With v as the vertex given in the statement of the lemma, let $X=N_{G}(v)$ and let $Y=\{1,2, \ldots, k\}$ be the colours in the k-edge-colouring of $G \backslash e$. SECOND consider the bipartite graph $H[X, Y]$ where $x \in X$ and $i \in Y$ are adjacent if and only if colour i is available at vertex x in the restriction \tilde{c} of colouring c to $G-v$ (notice that $G-v$ is a subgraph of $G \backslash e$). We now look for a matching of H. For all $x \in X \backslash\{u\}$, where u is the other end of e (i.e., $e=u v$), the colour of the edge $x v$ is available at x in $G-v$ (since edge $x v$ is not in $G-v$). So H includes an edge joining x and the colour of edge $x v$ (denoted $c(x v)$).

Lemma 17.3 (continued 1)

Proof (continued). So H contains the matching $M=\{(x, c(x v)) \mid x \in X \backslash\{u\}\}$; since the original k edge-colouring is proper, the colours $c(x v)$ for $x \in X \backslash\{u\}$ are all different, then M actually is a matching.
Conversely, every matching in H effectively assigns colours to the vertices of X which are covered by the matching. This gives a partial colouring of the coboundary $\partial(v)$ that is compatible with colouring \tilde{c} of $G-v$ (since colours assigned to edges of $\partial(v)$ are based on the available colours for those edges; this is how H is defined).

Lemma 17.3 (continued 1)

Proof (continued). So H contains the matching $M=\{(x, c(x v)) \mid x \in X \backslash\{u\}\}$; since the original k edge-colouring is proper, the colours $c(x v)$ for $x \in X \backslash\{u\}$ are all different, then M actually is a matching.
Conversely, every matching in H effectively assigns colours to the vertices of X which are covered by the matching. This gives a partial colouring of the coboundary $\partial(v)$ that is compatible with colouring \tilde{c} of $G-v$ (since colours assigned to edges of $\partial(v)$ are based on the available colours for those edges; this is how H is defined).

IF a matching of H saturates X (that is, covers all the vertices of $\left.X=N_{G}(v)\right)$ then all edges of $\partial(v)$ can be coloured in a way that is compatible with k-edge-colouring \tilde{c} of $G-v$, giving a k-edge-colouring of G, as claimed.

Lemma 17.3 (continued 1)

Proof (continued). So H contains the matching $M=\{(x, c(x v)) \mid x \in X \backslash\{u\}\}$; since the original k edge-colouring is proper, the colours $c(x v)$ for $x \in X \backslash\{u\}$ are all different, then M actually is a matching.
Conversely, every matching in H effectively assigns colours to the vertices of X which are covered by the matching. This gives a partial colouring of the coboundary $\partial(v)$ that is compatible with colouring \tilde{c} of $G-v$ (since colours assigned to edges of $\partial(v)$ are based on the available colours for those edges; this is how H is defined).

IF a matching of H saturates X (that is, covers all the vertices of $\left.X=N_{G}(v)\right)$ then all edges of $\partial(v)$ can be coloured in a way that is compatible with k-edge-colouring \tilde{c} of $G-v$, giving a k-edge-colouring of G, as claimed.

Lemma 17.3 (continued 2)

Proof (continued). We will modify the matching M which covers all vertices of X except for u, to give a new colouring c^{\prime} which then gives a new bipartite graph H^{\prime}; we'll show that H^{\prime} does contain a matching saturating X and the claim then follows.

By hypothesis, there is at least one colour available to each neighbor of v in the k-edge-colouring c of $G \backslash e$, so this gives each vertex $x \in X$ a degree at least one in $H[X, Y]$. In addition, the colour $c(x v)$ is available at vertex x in colouring \tilde{c} of $G-v$ (though $c(x v)$ is not available at x in the colouring c of $G \backslash e)$. So each vertex of $x \in X \backslash\{u\}$ is of degree at least two in $H[X, Y]$, and so each vertex of $X \backslash\{u\}$ is incident with at least one vertex of $H \backslash M$. Now for vertex $u \in X$, we have

$$
\begin{aligned}
d_{G \backslash e}(u) & =d_{G}(u)-1 \text { since } e=u v \in E(G) \\
& \leq \Delta(G)-1 \\
& \leq k-1 \text { since } \Delta \leq \chi^{\prime} \leq k .
\end{aligned}
$$

Lemma 17.3 (continued 2)

Proof (continued). We will modify the matching M which covers all vertices of X except for u, to give a new colouring c^{\prime} which then gives a new bipartite graph H^{\prime}; we'll show that H^{\prime} does contain a matching saturating X and the claim then follows.

By hypothesis, there is at least one colour available to each neighbor of v in the k-edge-colouring c of $G \backslash e$, so this gives each vertex $x \in X$ a degree at least one in $H[X, Y]$. In addition, the colour $c(x v)$ is available at vertex x in colouring \tilde{c} of $G-v$ (though $c(x v)$ is not available at x in the colouring c of $G \backslash e$). So each vertex of $x \in X \backslash\{u\}$ is of degree at least two in $H[X, Y]$, and so each vertex of $X \backslash\{u\}$ is incident with at least one vertex of $H \backslash M$. Now for vertex $u \in X$, we have

$$
\begin{aligned}
d_{G \backslash e}(u) & =d_{G}(u)-1 \text { since } e=u v \in E(G) \\
& \leq \Delta(G)-1 \\
& \leq k-1 \text { since } \Delta \leq \chi^{\prime} \leq k
\end{aligned}
$$

Lemma 17.3 (continued 3)

Proof (continued). Hence, u is also incident with at least one vertex of $H \backslash M$ (and by definition of M, u is incident with no edges of M). Therefore, each vertex of X is incident with at least one edge of $H \backslash M$.

We now follow some of the steps of the proof of Hall's Theorem (Theorem 16.4). Denote by Z the set of all vertices of H reachable from u by M-alternating paths (that is, paths that are alternately in M and in $H \backslash M$). Since matching M does not cover u, then each M-alternating path starting at u starts with an edge of $H \backslash M$. Set $R=X \cap Z$ and $B=Y \cap Z$ (so that R is a set of vertices adjacent to v in G and B is a set of colours). The vertices of $R \backslash\{u\}$ are matched under M with the vertices of B (because of the M-alternating path definition of Z). This implies a bijection between $R \backslash\{u\}$ and B so that $|B|=|R|-1$. Now the neighbors of vertices in R include all vertices in B; that is, $N_{H}(R) \supseteq B$.

Lemma 17.3 (continued 3)

Proof (continued). Hence, u is also incident with at least one vertex of $H \backslash M$ (and by definition of M, u is incident with no edges of M). Therefore, each vertex of X is incident with at least one edge of $H \backslash M$.

We now follow some of the steps of the proof of Hall's Theorem (Theorem 16.4). Denote by Z the set of all vertices of H reachable from u by M-alternating paths (that is, paths that are alternately in M and in $H \backslash M)$. Since matching M does not cover u, then each M-alternating path starting at u starts with an edge of $H \backslash M$. Set $R=X \cap Z$ and $B=Y \cap Z$ (so that R is a set of vertices adjacent to v in G and B is a set of colours). The vertices of $R \backslash\{u\}$ are matched under M with the vertices of B (because of the M-alternating path definition of Z). This implies a bijection between $R \backslash\{u\}$ and B so that $|B|=|R|-1$. Now the neighbors of vertices in R include all vertices in B; that is, $N_{H}(R) \supseteq B$.

Lemma 17.3 (continued 4)

Proof (continued). In fact, every vertex r in R is connected by an M-alternating path to u (starting at u with an edge in $H \backslash M$ and ending with an edge in M) so if r is joined to a vertex w of H by an edge in $H \backslash M$ then there is an M-alternating path from u to w and so $w \in B$. Notice that this is the only edge of M incident to r (since M is a matching), so the predecessor of r in the M-alternating path from u to r is the only neighbor of r joined to r by an edge of M; of course this neighbor of r is in B. Since r is an arbitrary vertex in R, then $N_{H}(R) \subseteq B$ and hence $N_{H}(R)=B$. We now have $\left|N_{H}(R)\right|=|B|=|R|-1$. Now each vertex of R is incident with at least one edge of $H \backslash M$ (as described above; see slide "Continued 3") so that we have the $|R|$ vertices of R joined to the $|R|-1$ vertices of $N_{H}(R)$ by at least $|R|$ edges of $H \backslash M$. Therefore (by the Pigeonhole Principle) some two vertices x and y of R are adjacent in $H \backslash M$ to a common colour $i \in B$. By the definition of bipartite H, this means that colour i is available at both vertices x and y

Lemma 17.3 (continued 4)

Proof (continued). In fact, every vertex r in R is connected by an M-alternating path to u (starting at u with an edge in $H \backslash M$ and ending with an edge in M) so if r is joined to a vertex w of H by an edge in $H \backslash M$ then there is an M-alternating path from u to w and so $w \in B$. Notice that this is the only edge of M incident to r (since M is a matching), so the predecessor of r in the M-alternating path from u to r is the only neighbor of r joined to r by an edge of M; of course this neighbor of r is in B. Since r is an arbitrary vertex in R, then $N_{H}(R) \subseteq B$ and hence $N_{H}(R)=B$. We now have $\left|N_{H}(R)\right|=|B|=|R|-1$. Now each vertex of R is incident with at least one edge of $H \backslash M$ (as described above; see slide "Continued 3") so that we have the $|R|$ vertices of R joined to the $|R|-1$ vertices of $N_{H}(R)$ by at least $|R|$ edges of $H \backslash M$. Therefore (by the Pigeonhole Principle) some two vertices x and y of R are adjacent in $H \backslash M$ to a common colour $i \in B$. By the definition of bipartite H, this means that colour i is available at both vertices x and y.

Lemma 17.3 (continued 5)

Proof (continued). Notice every colour in B is represented (in G) at vertex v because B is matched (in H) under M with $R \backslash\{u\}$ (see the figure above). In particular, colour i is represented at vertex v. Because the degree of v in $G \backslash e$ is at most $k-1$ (recall that v is an end of e), some colour $j \neq i$ is available (in $G \backslash e$) at v. Since every colour in $B \subset Y$ is represented at v, then $j \notin B$. If j is available to any vertex $r \in R$ then by the definition of $H=H[X, Y], r$ and j are adjacent in H. But then $j \in N_{H}(R)=B$ (since $N_{H}(R)=B$, as shown on slide "Continued 4"), contradicting $j \notin B$. Thus j is not adjacent to (that is, j is represented at) every vertex of R; in particular j is represented at both x and y.
We now exit our discussion of bipartite graph H and return to
consideration of graph $G \backslash e$. We are interested in vertices v, x, and y. To
summarize, we know that: colour i is represented at v and colour j is
available at v, and colour i is available at both x and y and colour j is represented at both x and y.

Lemma 17.3 (continued 5)

Proof (continued). Notice every colour in B is represented (in G) at vertex v because B is matched (in H) under M with $R \backslash\{u\}$ (see the figure above). In particular, colour i is represented at vertex v. Because the degree of v in $G \backslash e$ is at most $k-1$ (recall that v is an end of e), some colour $j \neq i$ is available (in $G \backslash e$) at v. Since every colour in $B \subset Y$ is represented at v, then $j \notin B$. If j is available to any vertex $r \in R$ then by the definition of $H=H[X, Y], r$ and j are adjacent in H. But then $j \in N_{H}(R)=B$ (since $N_{H}(R)=B$, as shown on slide "Continued 4"), contradicting $j \notin B$. Thus j is not adjacent to (that is, j is represented at) every vertex of R; in particular j is represented at both x and y.

We now exit our discussion of bipartite graph H and return to consideration of graph $G \backslash e$. We are interested in vertices v, x, and y. To summarize, we know that: colour i is represented at v and colour j is available at v, and colour i is available at both x and y and colour j is represented at both x and y.

Lemma 17.3 (continued 6)

Proof (continued). With M_{i} and M_{j} as the sets of edges of assigned colours i and j, respectively, define $H_{i j}=H\left[M_{i} \cup M_{j}\right]$. Notice that $d_{H_{i j}}(v)=d_{H_{i j}}(x)=d_{H_{i j}}(y)=1$. By Note/Definition 17.1.B, the connected components of $H_{i j}$ are even length cycles and paths. So each of the vertices v, x, and y are ends of path components of $H_{i j}$ (i.e., ends of $i j$-paths). The $i j$-path starting at v cannot end at both vertex x and vertex y, so we can assume that it does not end at y (or else, interchange x and $y)$. Let z be the terminal vertex of the $i j$-path P starting at vertex y (THIRD). Next, interchange the colours i and j on P. Since P is a connected component of $H_{i j}=H\left[M_{i} \cup M_{j}\right]$, then this interchanging of colours causes no conflict of colours (certainly no conflict at interior points of P, but also no conflict at the ends y and z). So this gives FOURTH a new colouring c^{\prime} of $G \backslash e$.

Lemma 17.3 (continued 6)

Proof (continued). With M_{i} and M_{j} as the sets of edges of assigned colours i and j, respectively, define $H_{i j}=H\left[M_{i} \cup M_{j}\right]$. Notice that $d_{H_{i j}}(v)=d_{H_{i j}}(x)=d_{H_{i j}}(y)=1$. By Note/Definition 17.1.B, the connected components of $H_{i j}$ are even length cycles and paths. So each of the vertices v, x, and y are ends of path components of $H_{i j}$ (i.e., ends of $i j$-paths). The $i j$-path starting at v cannot end at both vertex x and vertex y, so we can assume that it does not end at y (or else, interchange x and $y)$. Let z be the terminal vertex of the $i j$-path P starting at vertex y (THIRD). Next, interchange the colours i and j on P. Since P is a connected component of $H_{i j}=H\left[M_{i} \cup M_{j}\right]$, then this interchanging of colours causes no conflict of colours (certainly no conflict at interior points of P, but also no conflict at the ends y and z). So this gives FOURTH a new colouring c^{\prime} of $G \backslash e$.

Lemma 17.3 (continued 7)

Proof (continued). FIFTH, let $H^{\prime}[X, Y]$, where $X=N_{G}(v)$ and $Y=\{1,2, \ldots, k\}$, be the bipartite graph corresponding to c^{\prime}; that is, $x \in X$ and $i \in Y$ are adjacent if colour i is available at vertex x in the restriction \tilde{c}^{\prime} of c^{\prime} to $G-v$. With respect to colouring \tilde{c}^{\prime} the same colours are available at each vertex of X except at end vertex y of the $i j$-path and the end vertex z of the ij-path. However, vertex z may or may not be in $X=N_{G}(v)$. Therefore the only differences in the edge sets of $H=H[X, Y]$ and $H^{\prime}=H^{\prime}[X, Y]$ occur at y and possibly at z (if $z \in X$). Now vertex v does not lie on $i j$-path P because colour j is not represented at v and v is not an end of the path (the ends are y and z). Thus the colours represented at v in colourings c and c^{\prime} are the same. Hence the colours available to vertices of $X=N_{G}(v)$ are the same in colourings \tilde{c} and \tilde{c}^{\prime} of $G-v$. So matching

Lemma 17.3 (continued 7)

Proof (continued). FIFTH, let $H^{\prime}[X, Y]$, where $X=N_{G}(v)$ and $Y=\{1,2, \ldots, k\}$, be the bipartite graph corresponding to c^{\prime}; that is, $x \in X$ and $i \in Y$ are adjacent if colour i is available at vertex x in the restriction \tilde{c}^{\prime} of c^{\prime} to $G-v$. With respect to colouring \tilde{c}^{\prime} the same colours are available at each vertex of X except at end vertex y of the $i j$-path and the end vertex z of the ij-path. However, vertex z may or may not be in $X=N_{G}(v)$. Therefore the only differences in the edge sets of $H=H[X, Y]$ and $H^{\prime}=H^{\prime}[X, Y]$ occur at y and possibly at z (if $z \in X$). Now vertex v does not lie on ij-path P because colour j is not represented at v and v is not an end of the path (the ends are y and z). Thus the colours represented at v in colourings c and c^{\prime} are the same. Hence the colours available to vertices of $X=N_{G}(v)$ are the same in colourings \tilde{c} and \tilde{c}^{\prime} of $G-v$. So matching

$$
M=\{(x, c(x v)) \mid x \in X \backslash\{u\}\}=\left\{\left(x, c^{\prime}(v x)\right) \mid x \in X \backslash\{u\}\right\}
$$

of H is also a matching of H^{\prime}.

Lemma 17.3 (continued 8)

Proof (continued). Now vertex y is in $R=X \cap Z$ by choice and so (by the definition of Z) y is reachable from u by an M-alternating path Q in H. We use Q to find an M-augmenting path Q^{\prime} in H^{\prime} by considering two cases based on the location of vertex z (the terminal vertex of the $i j$-path P in $G \backslash e$ starting at $y)$.

Case 1. Suppose z lies on Q. Then $z \in X$ (since Q is a path in $H=H[X, Y]$) and $z \in Z$ (since it is then reachable from u by an M-alternating path) and hence $z \in R=X \cap Z$. Since M is a matching in H^{\prime} also, then $u Q z$ is an M-alternating path in H^{\prime} (since $z \neq y$ then the fact that H^{\prime} and H differ in that $(y, j) \in E(H),(y, i) \notin E(H)$ but $(y, i) \in E\left(H^{\prime}\right),(y, j) \notin E\left(H^{\prime}\right)$ is not an issue; at the other end, since $H^{\prime}=H^{\prime}[X, Y]$ is bipartite with $u, z \in X$ and $u Q z$ starts with an edge not in M, then $u Q z$ ends with an edge in M).

Lemma 17.3 (continued 8)

Proof (continued). Now vertex y is in $R=X \cap Z$ by choice and so (by the definition of Z) y is reachable from u by an M-alternating path Q in H. We use Q to find an M-augmenting path Q^{\prime} in H^{\prime} by considering two cases based on the location of vertex z (the terminal vertex of the $i j$-path P in $G \backslash e$ starting at $y)$.

Case 1. Suppose z lies on Q. Then $z \in X$ (since Q is a path in $H=H[X, Y]$) and $z \in Z$ (since it is then reachable from u by an M-alternating path) and hence $z \in R=X \cap Z$. Since M is a matching in H^{\prime} also, then $u Q z$ is an M-alternating path in H^{\prime} (since $z \neq y$ then the fact that H^{\prime} and H differ in that $(y, j) \in E(H),(y, i) \notin E(H)$ but $(y, i) \in E\left(H^{\prime}\right),(y, j) \notin E\left(H^{\prime}\right)$ is not an issue; at the other end, since $H^{\prime}=H^{\prime}[X, Y]$ is bipartite with $u, z \in X$ and $u Q z$ starts with an edge not in M, then $u Q z$ ends with an edge in M).

Lemma 17.3 (continued 9)

Proof (continued). Since $z \in R$ then, as shown above (see the "Continued 5" slide) j is represented at z in $G \backslash e$. Now i cannot also be represented at z, or else the $i j$-path P (a connected component of $\left.H_{i j}=H\left[M_{i} \cup M_{j}\right]\right)$ could be extended beyond z. So the $i j$-path P from y to z must have originally (that is in colouring c, before the colours i and j were interchanged in P) terminated at z in an edge of colour j. Then, with respect to the colouring c^{\prime}, the colour j is available at z so that (z, j) is an edge of H^{\prime}. Then $Q^{\prime}=u Q z j$ is an M-augmenting path in H^{\prime}.

Case 2. Suppose that z does not lie on Q. Since j is represented at y in colouring c (and i is not) then in colour c^{\prime}, i is represented at y (and j is not). That is, colour j is available at vertex y with respect to colouring c^{\prime} and so (y, j) is an edge of H^{\prime}. So $Q^{\prime}=u Q y j$ is an M-augmenting path in H^{\prime}.

In both cases, Q^{\prime} is an odd length path (it starts at a vertex of X and ends at a vertex of Y).

Lemma 17.3 (continued 9)

Proof (continued). Since $z \in R$ then, as shown above (see the "Continued 5" slide) j is represented at z in $G \backslash e$. Now i cannot also be represented at z, or else the $i j$-path P (a connected component of $\left.H_{i j}=H\left[M_{i} \cup M_{j}\right]\right)$ could be extended beyond z. So the $i j$-path P from y to z must have originally (that is in colouring c, before the colours i and j were interchanged in P) terminated at z in an edge of colour j. Then, with respect to the colouring c^{\prime}, the colour j is available at z so that (z, j) is an edge of H^{\prime}. Then $Q^{\prime}=u Q z j$ is an M-augmenting path in H^{\prime}.

Case 2. Suppose that z does not lie on Q. Since j is represented at y in colouring c (and i is not) then in colour c^{\prime}, i is represented at y (and j is not). That is, colour j is available at vertex y with respect to colouring c^{\prime} and so (y, j) is an edge of H^{\prime}. So $Q^{\prime}=u Q y j$ is an M-augmenting path in H^{\prime}.

In both cases, Q^{\prime} is an odd length path (it starts at a vertex of X and ends at a vertex of Y).

Lemma 17.3 (continued 10)

Lemma 17.3. Let G be a simple graph, v a vertex of G, e and edge of G incident to v, and k an integer with $k \geq \Delta$. Suppose that $G \backslash e$ has a k-edge-colouring c with respect to which every neighbor of v has at least one available colour. Then G is k-edge-colourable.

Proof (continued). Finally, set $M^{\prime}=M \triangle E\left(Q^{\prime}\right)$ (so that this is the matching M of H^{\prime}, but with the edges of M-augmenting path Q^{\prime} which are in M replaced with the edges of Q^{\prime} that are not in M). Since $Q^{\prime}=u Q y j$ is an odd length M-augmenting path starting and ending with edges not in M, this results in a net gain of one edge and includes an edge with u as an end in M^{\prime} (SIXTH). So M^{\prime} saturates X and, as commented above, this results in a colouring of $\partial(v)$ that is compatible with \tilde{c}^{\prime}, the restriction of c^{\prime} to $G-v$. This gives the k-edge-colouring of G, as desired.

Theorem 17.4. Vizing's Theorem

Theorem 17.4. Vizing's Theorem.
For any simple graph $G, \chi^{\prime} \leq \Delta+1$.
Proof. We give an inductive proof on the number of edges m of G. For the base case $m=1, G$ has one edge, and $\Delta=1$. So G has a 1 -edge colouring and hence $1=\chi^{\prime} \leq \Delta+1=2$. For the induction hypothesis, suppose that all simple graphs on $m=\ell$ edges have chromatic number $\chi^{\prime} \leq \Delta+1$.

Theorem 17.4. Vizing's Theorem

Theorem 17.4. Vizing's Theorem.

For any simple graph $G, \chi^{\prime} \leq \Delta+1$.
Proof. We give an inductive proof on the number of edges m of G. For the base case $m=1, G$ has one edge, and $\Delta=1$. So G has a 1-edge colouring and hence $1=\chi^{\prime} \leq \Delta+1=2$. For the induction hypothesis, suppose that all simple graphs on $m=\ell$ edges have chromatic number $\chi^{\prime} \leq \Delta+1$.

Now consider G a simple graph on $m=\ell+1$ edges. For e any edge of G, we have that $G \backslash e$ is a graph on $m=(\ell+1)-1=\ell$ edges. Let v be one end of e. By the induction hypothesis, $\chi^{\prime}(G \backslash e) \leq \Delta(G \backslash e)+1$. Since $\Delta(G \backslash e) \leq \Delta(G)$, we have $\chi^{\prime}(G \backslash e) \leq \Delta(G)+1$. With $k=\Delta(G)+1$, we then have (by the definition of $\chi^{\prime}(G \backslash e)$) that there is a k-edge-colouring of $G \backslash e$. Since $k=\Delta(G)+1 \geq \Delta(G \backslash e)+1>d_{G}(u)$ for all $u \in V(G \backslash e)$, then each vertex of $G \backslash e$ has at least one available colour.

Theorem 17.4. Vizing's Theorem

Theorem 17.4. Vizing's Theorem.

For any simple graph $G, \chi^{\prime} \leq \Delta+1$.
Proof. We give an inductive proof on the number of edges m of G. For the base case $m=1, G$ has one edge, and $\Delta=1$. So G has a 1-edge colouring and hence $1=\chi^{\prime} \leq \Delta+1=2$. For the induction hypothesis, suppose that all simple graphs on $m=\ell$ edges have chromatic number $\chi^{\prime} \leq \Delta+1$.

Now consider G a simple graph on $m=\ell+1$ edges. For e any edge of G, we have that $G \backslash e$ is a graph on $m=(\ell+1)-1=\ell$ edges. Let v be one end of e. By the induction hypothesis, $\chi^{\prime}(G \backslash e) \leq \Delta(G \backslash e)+1$. Since $\Delta(G \backslash e) \leq \Delta(G)$, we have $\chi^{\prime}(G \backslash e) \leq \Delta(G)+1$. With $k=\Delta(G)+1$, we then have (by the definition of $\chi^{\prime}(G \backslash e)$) that there is a k-edge-colouring of $G \backslash e$. Since $k=\Delta(G)+1 \geq \Delta(G \backslash e)+1>d_{G \backslash}(u)$ for all $u \in V(G \backslash e)$, then each vertex of $G \backslash e$ has at least one available colour.

Theorem 17.4. Vizing's Theorem (continued)

Theorem 17.4. Vizing's Theorem.
For any simple graph $G, \chi^{\prime} \leq \Delta+1$.

Proof. In particular, each neighbor of v in G has at least one available colour. By Lemma 17.3, G has a k-edge-colouring. Therefore $\chi^{\prime}(G) \leq k=\Delta(G)+1$. This establishes the induction step. Therefore, by mathematical induction, the claim holds for all simple graphs.

