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Theorem 17.9

Theorem 17.9

Theorem 17.9. Let G [X ,Y ] be a simple bipartite graph, and let D be an
orientation of its line graph L(G ) in which each X -clique and each
Y -clique induces a transitive tournament. Then D has a kernel.

Proof. We give an inductive proof on the number of edges of G , e(G ).
For e(G ) = 1, we have L(G ) = K1 and each X -clique and Y -clique
consists of a single vertex and the result holds trivially.

Before we state the induction hypothesis, we introduce some notation. For
v ∈ V (G ), denote by Tv the transitive tournament in D corresponding to
v (see Figure 17.7 in the notes). Every transitive tournament has a sink
and a source (by Exercise 2.2.A; this is where we need transitivity). For
x ∈ X let tx be the sink in transitive tournament Tv . Define set
K = {tx | x ∈ X} (in Figure 17.8 below this would be vertices x1y3, x2y4,
x3y2).
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Theorem 17.9

Theorem 17.9 (continued 1)

Proof (continued).

Every vertex of D − K lies in some Tx (since the vertex sets of X -cliques
partition the vertex set of L(G )) and so every vertex of D − K dominates
some vertex of K . If set K of vertices of D is a stable set, then K is a
kernel of D. If the vertices of K lie in distinct Y -cliques then they form a
stable set and hence a kernel of D.
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Theorem 17.9

Theorem 17.9 (continued 2)

Proof (continued). Notice that, by choice, the elements of K are from
different X -cliques; so no two vertices of K lie in either the same row or
the same column of the grid representing L(G ), see Figure 17.7, and so are
not adjacent.

Next, suppose the result holds for all simple bipartite graphs on m edges
(whee m ≥ 1). This is the induction hypothesis. Let G [X ,Y ] be a simple
bipartite graph on e(G ) = m + 1 edges. Since the line graph L(G ) is a
union of X -cliques and Y -cliques and the orientation D of L(G ) is a union
of transitive tournaments, then the result will follow if all the elements of
K = {tx | x ∈ X} lie in different Y -cliques. Suppose, then, that the
Y -clique Ty contains two vertices of K (we will create a kernel of D). One
of these vertices, say it is vertex tx , is nto the source sy of Ty (since we’ve
assumed there are two elements of K in Ty ). So sy dominates tx (that is,
(sy , tx) is an arc of D). Set D ′ = D − sy .
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Theorem 17.9

Theorem 17.9 (continued 3)

Proof (continued). Then D ′ is an orientation of the line graph L(G \ e),
where e is the edge of G corresponding to the vertex sy of L(G ). Now
G \ e is a simple bipartite graph on m edges and each clique of D ′ induces
a transitive tournament (in fact, all cliques of D and D ′ are the same,
except for the Y -clique Ty of D which corresponds to the Y -clique
Ty \ {sy} of D ′ with one less vertex). By the induction hypothesis, D ′ has
a kernel K ′. We next show that K ′ is also a kernel of D. For this, it
suffices (by the definition of kernel) to show that sy dominates some
vertex of K ′, which we now do.

If tx ∈ K ′ then xy dominates tx in D, since sy , tx) is an arc of D, and we
are done. If tx 6∈ K ′, then tx dominates v for some v ∈ K ′ because then
tx ∈ D ′ −K ′ and K ′ is a kernel of D ′, so that (tx , v) is an arc of D ′. Since
tx is the sink of its X -clique (by definition of tx) then v cannot lie in the
X -clique containing tx and so v must lie in the Y -clique of D ′ containing
tx .
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Theorem 17.9

Theorem 17.9 (continued 4)

Theorem 17.9. Let G [X ,Y ] be a simple bipartite graph, and let D be an
orientation of its line graph L(G ) in which each X -clique and each
Y -clique induces a transitive tournament. Then D has a kernel.

Proof (continued). (Since E ′ contains only arcs within transitive
tournaments Tu where u is an element of X or an element of Y ; that is, in
the grid representation of the line graph, there are only edges between
vertices in the same row or the same column, as discussed in Note 17.5.C).
Since tx was chosen from Y -clique Ty of D, then we must have v in
Y -clique Ty − {sy} of D ′. Now sy is the source of Ty in D and so sy
dominates v . In both cases (namely, tx ∈ K ′ and tx 6∈ K ′), we have that
Sy dominates some element of K ′. As described above, this shows that K ′

is a kernel of D. This established the induction step. Therefore, by
mathematical induction, the result holds for all simple bipartite graphs.
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Theorem 17.10

Theorem 17.10

Theorem 17.10. Every simple bipartite graph G is ∆-list-edge-colourable.

Proof. Let G = G [X ,Y ] be a simple bipartite graph with maximum
degree ∆ = k. Let c : E (G ) → {a, 2, . . . , k} be a k-edge-colouring of G
which exists by Theorem 17.2. The colouring c induces a k-colouring of
L(G ) by Note 17.5.B. Orient each edge of L(G ) joining two vertices of an
X -clique from lower to higher colour, and orient each edge of L(G ) joining
two vertices of a Y -clique from higher to lower colour, as in Figure 17.8
(above). Call this orientation of L(G ) digraph D.

The 4-edge-colouring of
G is indicated in the line graph of Figure 17.8 with the labels on the
vertices; the X -cliques are “horizontal” and the Y -cliques are “vertical”
here (see Note 17.5.C). The orientations on the X -cliques and Y -cliques
are based on the vertex colouring of L(G ) and so each is a transitive
subgraph of L(G ); that is, each is a transitive tournament. So the
hypotheses of Theorem 17.9 are satisfied.
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Theorem 17.10

Theorem 17.10 (continued)

Theorem 17.10. Every simple bipartite graph G is ∆-list-edge-colourable.

Proof (continued). In fact, any induced subgraph of D is either an
X -clique, a Y -clique, or has connected components that are intersections
of X -cliques and Y -cliques. Such subgraphs also satisfy the hypotheses of
Theorem 17.9. Hence by Theorem 17.9, every subgraph of D has a kernel.
Moreover the maximum outdegree in D is ∆+(D) = k − 1 (a vertex of G
of degree ∆ is in an X -clique or a Y -clique of k vertices and so this clique
contains a vertex of outdegree k − 1 (the vertex of lowest colour in the
clique if it is an X -clique and the vertex of highest colour in the clique if it
is a Y -clique). So by Theorem 14.20, L(G ) is ((k − 1) + 1)-list colourable
(i.e., k-list colourable). Therefore, by Note 17.5.B, G is
lest-edge-colourable, as claimed.
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