Graph Theory

Chapter 17. Edge Colourings

17.6. Further Reading—Proofs of Theorems

Table of contents

(1) Theorem 17.6.A

Theorem 17.6.A

Theorem 17.6.A. For $m \neq n, \chi^{\prime \prime}\left(K_{m, n}\right)=\Delta+1$. In addition, $\chi^{\prime \prime}\left(K_{n, n}\right)=\Delta+2$.

Proof. Suppose $m \neq n$. Say, without loss of generality, $m<n$. Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\} \quad Y=\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\}$, and $K_{m, n}=G[X, Y]$. Define $A_{p}=\left\{x_{i} y_{i+p} \mid i=0,1, \ldots, m-1\right\}$ for $p=0,1, \ldots, n-1$ where the indices $i+p$ are reduced modulo n. Notice that each A_{p} for $p=0,1, \ldots, n-1$ contains no two edges incident to the same vertex. So for a given p the same colour can be assigned to all edges in A_{p}.

Theorem 17.6.A

Theorem 17.6.A. For $m \neq n, \chi^{\prime \prime}\left(K_{m, n}\right)=\Delta+1$. In addition, $\chi^{\prime \prime}\left(K_{n, n}\right)=\Delta+2$.

Proof. Suppose $m \neq n$. Say, without loss of generality, $m<n$. Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\} Y=\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\}$, and $K_{m, n}=G[X, Y]$. Define $A_{p}=\left\{x_{i} y_{i+p} \mid i=0,1, \ldots, m-1\right\}$ for $p=0,1, \ldots, n-1$ where the indices $i+p$ are reduced modulo n. Notice that each A_{p} for $p=0,1, \ldots, n-1$ contains no two edges incident to the same vertex. So for a given p the same colour can be assigned to all edges in A_{p}. (By the way, the sets of edges A_{p} for $p=0,1, \ldots, n-1$ partition the edge set of $K_{m, n}$ and this show that the edge chromatic number of $K_{m, n}$ is
$\chi^{\prime}\left(K_{m, n}=n=\Delta\left(K_{m, n}\right)\right.$, so that $K_{m, n}$ is Class 1.) Notice for
$i \in\{0,1, \ldots, m-1\}$ we have $(i+p)(\bmod n) \neq p-1$ (in particular, $((m-1)+p)(\bmod n)=((p-1)+m(\bmod n)<p-1$ because $m<n)$.

Theorem 17.6.A

Theorem 17.6.A. For $m \neq n, \chi^{\prime \prime}\left(K_{m, n}\right)=\Delta+1$. In addition, $\chi^{\prime \prime}\left(K_{n, n}\right)=\Delta+2$.

Proof. Suppose $m \neq n$. Say, without loss of generality, $m<n$. Let $X=\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\} \quad Y=\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\}$, and $K_{m, n}=G[X, Y]$. Define $A_{p}=\left\{x_{i} y_{i+p} \mid i=0,1, \ldots, m-1\right\}$ for $p=0,1, \ldots, n-1$ where the indices $i+p$ are reduced modulo n. Notice that each A_{p} for $p=0,1, \ldots, n-1$ contains no two edges incident to the same vertex. So for a given p the same colour can be assigned to all edges in A_{p}. (By the way, the sets of edges A_{p} for $p=0,1, \ldots, n-1$ partition the edge set of $K_{m, n}$ and this show that the edge chromatic number of $K_{m, n}$ is
$\chi^{\prime}\left(K_{m, n}=n=\Delta\left(K_{m, n}\right)\right.$, so that $K_{m, n}$ is Class 1.) Notice for $i \in\{0,1, \ldots, m-1\}$ we have $(i+p)(\bmod n) \neq p-1($ in particular, $((m-1)+p)(\bmod n)=\left((p-1)+m_{(\bmod n)}\right)<p-1$ because $\left.m<n\right)$.

Theorem 17.6.A (continued 1)

Proof (continued). So no edge of A_{p} is incident with vertex y_{p-1}, and the colour assigned to the edges of A_{p} can also be assigned to vertex y_{p-1} for $p=0,1, \ldots, n-1$. This gives a proper total colouring (with n colours) of all edges of $K_{n, n}$ and all vertices of set $Y=\left\{t_{0}, y_{1}, \ldots, y_{n}\right\}$. Finally, we use one additional colour on the vertices of set $X=\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\}$. This gives a total colouring of $K_{m, n}$ with $n+1=\Delta+1$ colours. Therefore $\chi^{\prime \prime}\left(K_{m, n}\right) \leq \Delta+1$. By Note 17.6. A we have $\chi^{\prime \prime}(G) \geq \Delta+1$ and hence $\chi^{\prime \prime}\left(K_{m, n}\right)=\Delta+1$, as claimed.

Now consider $K_{n, n}$. Let S be a set of vertices and edges of $K_{n, n}$ that are all assigned the same colour in a proper total colouring of $K_{n, n}$. ASSUME $|S|>n$. Notice that S cannot contain all edges (since this would imply that S contains two edges incident to the same vertex) nor can S contain all vertices (since this would imply that S contains two adjacent vertices) Let ν be the number of vertices of S and ε be the number of edges of S, so that $|S|=\nu+\varepsilon$.

Theorem 17.6.A (continued 1)

Proof (continued). So no edge of A_{p} is incident with vertex y_{p-1}, and the colour assigned to the edges of A_{p} can also be assigned to vertex y_{p-1} for $p=0,1, \ldots, n-1$. This gives a proper total colouring (with n colours) of all edges of $K_{n, n}$ and all vertices of set $Y=\left\{t_{0}, y_{1}, \ldots, y_{n}\right\}$. Finally, we use one additional colour on the vertices of set $X=\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\}$.
This gives a total colouring of $K_{m, n}$ with $n+1=\Delta+1$ colours. Therefore $\chi^{\prime \prime}\left(K_{m, n}\right) \leq \Delta+1$. By Note 17.6. A we have $\chi^{\prime \prime}(G) \geq \Delta+1$ and hence $\chi^{\prime \prime}\left(K_{m, n}\right)=\Delta+1$, as claimed.

Now consider $K_{n, n}$. Let S be a set of vertices and edges of $K_{n, n}$ that are all assigned the same colour in a proper total colouring of $K_{n, n}$. ASSUME $|S|>n$. Notice that S cannot contain all edges (since this would imply that S contains two edges incident to the same vertex) nor can S contain all vertices (since this would imply that S contains two adjacent vertices). Let ν be the number of vertices of S and ε be the number of edges of S, so that $|S|=\nu+\varepsilon$.

Theorem 17.6.A (continued 2)

Proof (continued). Each vertex of S is adjacent to n other vertices and incident to n edges; each edge of S is incident to 2 vertices and shares a vertex with $2(n-1)$ other edges. Now the number of elements of S plus the number of edges and arcs incident/adjacent to an element of S cannot exceed the total number of edges and vertices. That is, $(\nu+\varepsilon)+\nu(n+n)+\varepsilon(2+2(n-1)) \leq n^{2}+2 n$ or $(\nu+\varepsilon)+2 n \nu+2 n \varepsilon \leq n^{2}+2 n$ or $(\nu+\varepsilon)(2 n+1) \leq n^{2}+2 n$. However, we have assumed that $|S|=\nu+\varepsilon>n$ and we must have $(\nu+\varepsilon)(2 n+1)>n(2 n+1)=2 n^{2}+n=n^{2}+\left(n^{2}+n\right) \geq n^{2}+(n+n)=n^{2}+2 n$, a CONTRADICTION. So the assumption that $|S|>n$ is false, and hence $|S| \leq n$. So the largest that a "colour class" of a total colouring of $K_{n, n}$ can be is n. Since $\left|E\left(K_{n, n}\right)\right|+\left|V\left(K_{n, n}\right)\right|=n^{2}+2 n$, then a total coluring of all edges and vertices of $K_{n, n}$ requires at least $\left(n^{2}+2 n\right) / n=n+2$ colours. Therefore $\chi^{\prime \prime}\left(K_{n, n}\right) \geq n+2=\Delta+2$.

Theorem 17.6.A (continued 2)

Proof (continued). Each vertex of S is adjacent to n other vertices and incident to n edges; each edge of S is incident to 2 vertices and shares a vertex with $2(n-1)$ other edges. Now the number of elements of S plus the number of edges and arcs incident/adjacent to an element of S cannot exceed the total number of edges and vertices. That is, $(\nu+\varepsilon)+\nu(n+n)+\varepsilon(2+2(n-1)) \leq n^{2}+2 n$ or $(\nu+\varepsilon)+2 n \nu+2 n \varepsilon \leq n^{2}+2 n$ or $(\nu+\varepsilon)(2 n+1) \leq n^{2}+2 n$. However, we have assumed that $|S|=\nu+\varepsilon>n$ and we must have $(\nu+\varepsilon)(2 n+1)>n(2 n+1)=2 n^{2}+n=n^{2}+\left(n^{2}+n\right) \geq n^{2}+(n+n)=n^{2}+2 n$, a CONTRADICTION. So the assumption that $|S|>n$ is false, and hence $|S| \leq n$. So the largest that a "colour class" of a total colouring of $K_{n, n}$ can be is n. Since $\left|E\left(K_{n, n}\right)\right|+\left|V\left(K_{n, n}\right)\right|=n^{2}+2 n$, then a total coluring of all edges and vertices of $K_{n, n}$ requires at least $\left(n^{2}+2 n\right) / n=n+2$ colours. Therefore $\chi^{\prime \prime}\left(K_{n, n}\right) \geq n+2=\Delta+2$.

Theorem 17.6.A (continued 3)

Theorem 17.6.A. For $m \neq n, \chi^{\prime \prime}\left(M_{m, n}\right)=\Delta+1$. In addition, $\chi^{\prime \prime}\left(K_{n, n}\right)=\Delta+2$.

Proof (continued). With A_{p} defined as in the case $m \neq n$ (above) for $p=0,1, \ldots, n-1$, we can assign a different colour to each of these sets of edges (using n colours). We can colour set X of vertices with another colour, and set Y of vertices with a final colour. This gives a total colouring of $K_{n, n}$ with $n+2=\Delta+2$ colours so that $\chi^{\prime \prime}\left(K_{n, n}\right) \leq \Delta+2$. Since we have $\chi^{\prime \prime}\left(K_{n, n}\right) \geq \Delta+2$ from above, we can conclude that $\chi^{\prime \prime}\left(K_{n, n}\right)=\Delta+2$, as claimed.

